Skip to main content

Carbon Dioxide Dynamics and Sequestration in Mine Water and Waste

Kohlendioxid-Dynamik und -Bindung in Grubenwasser und Abfall: Ein Überblick

Dinámica y captura de dióxido de carbono en agua y residuos de mina: una recopilación crítica

矿井废水及固体废弃物的二氧化碳动力学特征及捕集技术:综述评论

Abstract

The role and importance of CO2 in the mining sector has been overlooked until relatively recently. This review presents the complexities of CO2 and mine water evolution . Carbon sequestration using mine waters and solid wastes and recent research on the profound impacts of dissolved CO2 on active and passive treatment were reviewed. The literature indicates great promise for more efficient and fiscally competitive operations, lower environmental impacts, and a decreased carbon footprint for such operations. However, a tremendous amount of research and field testing is necessary to move many of these approaches forward to full scale common application.

Zusammenfassung

Die Rolle und Bedeutung von CO2 im Bergbausektor wurde bis vor kurzem nicht hinreichend berücksichtigt. Der folgende Überblick stellt die Komplexität des Systems CO2 und Grubenwassers dar. Die Kohlenstoffbindung mit Grubenwasser und festen Abfällen sowie die jüngsten Forschungen über die tiefgreifenden Auswirkungen von gelöstem CO2 über aktive und passive Behandlung wurden geprüft. Aus den Angaben in der Literatur ergeben sich große Erwartungen an die Effizienz und Wirtschaftlichkeit sowie geringe Umweltauswirkungen (bessere CO2-Bilanz) bei solchen Verfahren. Allerdings sind noch umfangreiche Forschungen und Feldversuche erforderlich, um die zahlreichen Ansätze in die Praxistauglichkeit zu überführen.

Resumen

El rol y la importancia de CO2 en el sector minero han sido desestimadas hasta tiempos recientes. Esta recopilación crítica presenta las complejidades de la interacción entre CO2 y agua de minas. Se recopiló la información sobre la captura de carbono usando aguas y residuos sólidos de minas y sobre las investigaciones recientes acerca del impacto profundo de CO2 disuelto sobre los tratamientos pasivos y actives. La bibliografía sugiere amplias posibilidades para desarrollar operaciones más eficientes y más competitivas, con menores impactos ambientales y menores huellas de carbono. Sin embargo, una cantidad muy grande de investigación y de testeo en campo es aún necesaria para llevar muchas de estas aproximaciones hacia una aplicación a gran escala.

摘要

近几年,二氧化碳在采矿领域中的地位和作用引起广泛关注。文章介绍了二氧化碳在矿井水领域的复杂反应动力学机理及演化过程,综述了利用矿井废水及固体废弃物进行CO2捕集的研究现状,评价了溶解二氧化碳对于矿井废水主动处理与被动力处理的影响。该类技术具有经济、有效、低环境影响和碳占用少的巨大潜力。目前,还需要大量深入研究及野外试验才能使该技术成为现实。

This is a preview of subscription content, access via your institution.

References

  • American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Baltimore

    Google Scholar 

  • Atekwana EA, Fonyuy EW (2009) Dissolved inorganic carbon concentrations and stable carbon isotope ratios in streams polluted by variable amounts of acid mine drainage. J Hydrol 372:136–148

    Article  Google Scholar 

  • Birkham TK, Hendry MJ, Wassenaar LI, Mendoza CA, Lee ES (2003) Characterizing geochemical reactions in unsaturated mine waste-rock piles using gaseous O2, CO2, 12CO2, and 13CO2. Environ Sci Technol 37:496–501

    Article  Google Scholar 

  • Cravotta CA (2007) Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA. Mine Water Environ 26:128–149

    Article  Google Scholar 

  • Cravotta CA, Geroni J (2013) Effects of CO2 degassing on pH and Fe(II) oxidation rates in coal mine effluents. In: Brown A, Figueroa L, Wolkersdorfer C (eds) Proceedings of the 2013 annual IMWA conference, Reliable Mine Water Technology, vol II, pp 949–955

  • Cravotta CA, Dugas DL, Brady KBC, Kovalchuck TE (1994) Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine, Clarion County, PA, USA. In: Proceedings of the international land reclamation and mine drainage conference and 3rd international conference on the abatement of acidic rock drainage (ICARD), Pittsburgh, PA, USA. USBM SP 06A 94, pp 365–374

  • Dere AL, Stehouwer RC (2011) Labile and stable nitrogen and carbon in mine soil reclaimed with manure-based amendments. Soil Sci Soc Am J 75(3):890–897

    Article  Google Scholar 

  • Fox JF, Campbell JE (2010) Terrestrial carbon disturbances from mountaintop mining increases lifecycle emission for clean coal. Environ Sci Technol 44(6):2144–2149

    Article  Google Scholar 

  • Gbolo P, Lopez DL (2013) Chemical and geological control on surface water within the Shade River Watershed in Southeastern Ohio. J Environ Prot 4:1–11

    Article  Google Scholar 

  • Gehm HW (1944) Neutralization of acid waste waters with an up-flow expanded limestone bed. Sew Works J 16(1):104–120

    Google Scholar 

  • Geroni JN, Sapsford DJ (2011) Kinetics of iron (II) oxidation determined in the field. Appl Geochem 26:1452–1457

    Article  Google Scholar 

  • Glaesser W, Lerche I (2005) Carbon dioxide development in aerobic parts of lignite mining dumps: the influence of rising groundwater in the Sopuden-Zwenkau dump: II-quantitative models. Environ Geosci 12(3):153–164

    Article  Google Scholar 

  • Glaesser W, Nitzsche HM, Lerche I (2005) Carbon dioxide development in aerobic parts of lignite mining dumps: the influence of rising groundwater in the Sopuden-Zwenkau dump: I-observations and inferences. Environ Geosci 12(3):153–164

    Article  Google Scholar 

  • Goetz ER, Riefler RG (2014) Performance of steel slag leach beds in acid mine drainage treatment. Chem Eng J 240:579–588

    Article  Google Scholar 

  • Goetz ER, Riefler RG (in press) Geochemistry of CO2 in steel slag leach beds. Mine Water Environ. doi:10.1007/s10230-014-0290-8

  • Hall J, Younger P, Glendinning S (2006) Is minewater a source of hazardous gas? In: Proceedings, 10th IAEG international congress, Geological Soc of London, UK

  • Harrison AL, Power IM, Dipple GM (2013) Strategies for enhancing carbon sequestration in Mg-rich mine tailings. In: Brown A, Figueroa L, Wolkersdorfer C (eds) Proceedings, 2013 annual IMWA conference, reliable mine water technology, vol I, pp 593–599

  • Hedin RS, Hedin BC (in press) Increasing oceanic carbon fixation through Fe fertilization: opportunity for mine water? Mine Water Environ. doi:10.1007/s10230-014-0305-5

  • Hedin RS, Watzlaf GR, Nairn RW (1994) Passive treatment of acid mine drainage with limestone. J Environ Qual 23:1338–1345

    Article  Google Scholar 

  • Hengen TJ, Squillace MK, O’Sullivan AD, Stone JJ (2014) Life cycle assessment analysis of active and passive acid mine drainage treatment technologies. Resour Conserv Recycl 86:160–167

    Article  Google Scholar 

  • Jacinthe P, Lal R (2006) Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southeastern Ohio. Geoderma 136:598–608

    Article  Google Scholar 

  • Jageman TC, Yokley RA, Heunisch GW (1988) The use of pre-aeration to reduce the cost of neutralizing acid mine drainage. In: Proceedings, 1988 mine drainage and surface mine reclamation conference, American Soc for Surface Mining and Reclamation (ASMR), USBM IC 9184, Pittsburgh, PA, USA pp 131–135. http://www.asmr.us/Publications/Conference%20Proceedings/1988%20papers/Jageman%20131-135.pdf

  • Jarvis AP (2006) The role of dissolved carbon dioxide in governing deep coal mine water quality and determining treatment process selection. In: Barnhisel RI (ed) Proceedings, 7th ICARD, St. Louis MO, USA, pp 833–843. http://www.imwa.info/docs/imwa_2006/0833-Jarvis-UK.pdf

  • Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Poll 3:47–66

    Article  Google Scholar 

  • Kempka T, Fernández-Steeger T, Li D, Schulten M, Schlüter R, Kroos BM (2001) Carbon dioxide sorption capacities of coal gasification residues. Environ Sci Technol 45:1719–1723

    Article  Google Scholar 

  • Kern DM (1960) The hydration of carbon dioxide. J Chem Educ 37(1):14–23

    Article  Google Scholar 

  • Kirby CS, Cravotta CA (2005a) Net alkalinity and net acidity 1: theoretical considerations. Appl Geochem 20:1920–1940

    Article  Google Scholar 

  • Kirby CS, Cravotta CA (2005b) Net alkalinity and net acidity 2: practical considerations. Appl Geochem 20:1941–1964

    Article  Google Scholar 

  • Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511–530

    Article  Google Scholar 

  • Kirby CS, Dennis A, Kahler A (2009) Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage. Appl Geochem 24:1175–1184

    Article  Google Scholar 

  • Kruse N, Brewster K, Bowman J, Riefler RG (2012) Alkalinity production as an indicator of failure in steel slag leach beds treating acid mine drainage. Environ Earth Sci 67(5):1389–1395

    Article  Google Scholar 

  • Macy TR, Kruse NA, Stuart BJ (in press) Carbon footprint analysis of source water for hydraulic fracturing: a case study of mine water versus freshwater. Mine Water Environ. doi:10.1007/s10230-014-0291-7

  • McAllan J, Banks D, Beyer N, Watson I (2009) Alkalinity, temporary (CO2) and permanent acidity: an empirical assessment of the significance of field and laboratory determinations on mine waters. Geochem Explor Environ A 9:299–312

    Article  Google Scholar 

  • Means B, Beam PGR, Mercer J (in press) Analysis of hydrated lime consumption in circumneutral underground coal mine drainage treatment. Mine Water Environ. doi:10.1007/s10230-014-0308-2

  • Meyer NA, Vogeli JU, Becker M, Broadhurst JL, Reid DL, Franzidis JP (2014) Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: a case study. Miner Eng 59:45–51

    Article  Google Scholar 

  • Mills SJ, Wilson SA, Dipple GM, Radusepp M (2010) The decomposition of konyaite: importance in CO2 fixation in mine tailings. Mineral Mag 74(5):903–917

    Article  Google Scholar 

  • Mudd GM, Diesendorf M (2008) Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency. Environ Sci Technol 42:2624–2630

    Article  Google Scholar 

  • Nairn RW, LaBar JA, Strevett KA, Strosnider WH, Morris D, Neely CA, Garrido A, Santamaria B, Oxenford L, Kauk K, Carter S, Furneaux B (2010) A large, multi-cell, ecologically-engineered passive treatment system for ferruginous lead–zinc mine waters. In: Proceedings, IMWA symposium, Sydney, NS, Canada

  • Norgate T, Haque N (2010) Energy and greenhouse gas impacts of mining and mineral processing operations. J Clean Prod 18(3):266–274

    Article  Google Scholar 

  • Paktunc AD (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39(2):103–112

    Article  Google Scholar 

  • Pérez-López R, Castillo J, Quispe D, Nieto JM (2010) Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste. J Hazard Mater 177:762–772

    Article  Google Scholar 

  • Power IM, Wilson SA, Dipple GM (2013a) Serpentite carbonation for CO2 sequestration. Elements 9:115–121

    Article  Google Scholar 

  • Power IM, Harrison AL, Dipple GM, Southam G (2013b) Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int J Greenh Gas Control 16:145–155

    Article  Google Scholar 

  • Raymond PA, Oh N (2009) Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth Planet Sci Lett 284:50–56

    Article  Google Scholar 

  • Romanov VN, Ackman TE, Soong Y, Kleinmann RL (2009) CO2 storage in shallow underground and surface coal mines: challenges and opportunities. Environ Sci Technol 43(3):561–564

    Article  Google Scholar 

  • Rose AW, Cravotta III CA (1998) Geochemistry of coal-mine drainage. In: Brady, KBC, Smith, MW, Schueck, J (eds) Coal mine drainage prediction and pollution prevention, Harrisburg, PA, Pennsylvania Dept of Environmental Protection, Harrisburg, PA, USA, pp 1.1–1.22

  • Salm J-O, Maddison M, Tammik S, Soosaar K, Truu J, Mander U (2012) Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692:41–55

    Article  Google Scholar 

  • Shrestha RK, Lal R (2006) Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environ Int 32:781–796

    Article  Google Scholar 

  • Sibrell PL, Watten BJ, Friedrich AE, Vinci BJ (2000) ARD remediation with limestone in a CO2 pressurized reactor. In: Proceedings, 5th ICARD, vol 2, Denver, CO, USA, pp 1017–1026

  • Sracek O, Gzyl G, Frolik A, Kubica J, Bzowski Z, Gwoździewicz M, Kura K (2010) Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environ Monit Assess 165:233–254

    Article  Google Scholar 

  • Strosnider WHJ, López FSL, LaBar JA, Palmer KJ, Nairn RW (2014) Unabated acid mine drainage from Cerro Rico de Potosí, Bolivia: uncommon constituents of concern impact the Rio Pilcomayo headwaters. Environ Earth Sci 71:3223–3234

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York City

    Google Scholar 

  • Sundh I, Nilsson M, Mikkelä C, Granberg G, Svensson BH (2000) Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29(8):499–503

    Google Scholar 

  • Tripathi N, Singh RS, Nathanail CP (2014) Mine spoil acts as a sink of carbon dioxide in Indian dry tropical environment. Sci Tot Environ 468–469:1162–1171

    Article  Google Scholar 

  • Tuazon D, Corder GD (2008) Life cycle assessment of seawater neutralized red mud for treatment of acid mine drainage. Resour Conserv Recycl 52:1307–1314

    Article  Google Scholar 

  • Watten BJ, Sibrell PL, Schwartz MF (2004) Effect of acidity and elevated \( {\text{P}}_{{{\text{CO}}_{ 2} }} \)PCO2 on acid neutralization within pulsed limestone bed reactors receiving coal mine drainage. Environ Eng Sci 21(6):786–802

    Article  Google Scholar 

  • Wilson SA, Barker SLL, Dipple GM, Atudorei V (2010) Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration. Environ Sci Technol 44(254):9522–9529

    Article  Google Scholar 

  • Wilson SA, Harrison AL, Dipple GM, Power IM, Barker SLL, Mayer KU, Fallon SJ, Raudsepp M, Southam G (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int J Greenh Gas Control 25:121–140

    Article  Google Scholar 

  • Winfrey BK, Nairn RW, Tilley DR, Strosnider WHJ (in press) Emergy and carbon footprint analysis of the construction of passive and active treatment systems for net alkaline mine drainage. Mine Water Environ. doi:10.1007/s10230-014-0304-6

  • Wolkersdorfer C, Bowell R (eds) (2004a) Contemporary reviews of mine water studies in Europe, parts 1. Mine Water Environ 23:162–182

  • Wolkersdorfer C, Bowell R (eds) (2004b) Contemporary reviews of mine water studies in Europe, parts 2. Mine Water Environ 24:2–37

  • Wolkersdorfer C, Bowell R (eds) (2004c) Contemporary reviews of mine water studies in Europe, parts 3. Mine Water Environ 23:58–76

  • Wood CR (1996) Water quality of large discharges from mines in the anthracite region of Eastern Pennsylvania. USGS Water-Resources Investigations Report 95-4243, Washington, DC, USA

  • Younger PL, Mayes WM (in press) The potential use of exhausted open pit mine voids as sinks for atmospheric CO2: insights from natural reedbeds and mine water treatment wetlands. Mine Water Environ. doi:10.1007/s10230-014-0293-5

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Kruse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kruse, N.A., Strosnider, W.H.J. Carbon Dioxide Dynamics and Sequestration in Mine Water and Waste. Mine Water Environ 34, 3–9 (2015). https://doi.org/10.1007/s10230-014-0320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0320-6

Keywords

  • Iron oxidation
  • Acid mine drainage
  • Passive treatment
  • Active treatment
  • Carbon footprint