Mine Water and the Environment

, Volume 34, Issue 4, pp 417–429 | Cite as

Metalloid Attenuation from Runoff Waters at an Historic Orogenic Gold Mine, New Zealand

  • J. DruzbickaEmail author
  • D. Craw
Technical Article


The metalloids arsenic and antimony are mobilised through the decomposition of arsenopyrite, pyrite, and stibnite at the historic Big River Mine. Their content in the solid substrates reach levels up to ≈25 wt% As and 3.6 wt% Sb, but their concentrations in the mine water are only elevated locally, up to 0.85 mg/L dissolved As and 0.007 mg/L dissolved Sb. Water draining the waste rock are characterised by neutral pH, but at the mine’s former processing site, the oxidation of sulphide concentrates has produced acidic conditions, both in the water (pH 3.8) and solid mining residues (paste pH 2–4). Dissolved metalloid concentrations are being effectively attenuated on site through the formation of secondary As phases in the mining residues, including scorodite, iron sulphoarsenate, and amorphous iron arsenate. Attenuation is also occurring by co-precipitation and adsorption onto iron oxides or hydroxides, and adsorption onto clay mineral surfaces. These processes are complemented by dilution of the dissolved As and Sb by the Big River. Therefore, despite the extremely high levels of As and Sb in the mining residues, metalloid mobilisation is limited, resulting in relatively low concentrations in water leaving the site.


Gold mining Arsenic Antimony Metalloid mobility Mining residues 

Metalloid-Rückhaltung aus dem Abwasser eines ehemaligen Goldabbaus in einer orogen gebildeten Lagerstätte in Neuseeland


Die Metalloide Arsen und Antimon werden als Abbauprodukt bei der Umsetzung von Arsenopyrit, Pyrit und Stibnit aus der Big River Mine freigesetzt. Es sind Feststoffgehalte bis zu 25 Gew-% As und 3.6 Gew-% Sb in den Bergwerksabfälle bekannt. Im Abwasser des Standorts werden jedoch nur lokal erhöhte Werte von bis zu 0.85 mg/L gelöstes As und 0.007 mg/L gelöstes Sb gemessen. Die Haldenabwässer haben neutrale pH-Werte. Am früheren Aufbereitungsstandort des Bergwerks existieren jedoch sowohl im Wasser (pH 3.8) als auch in den festen Rückständen (Feststoff pH 2–4) saure Bedingungen, was auf die Oxidation von Sulfiden zurückgeführt wird. Die gelösten Metalloide werden auf dem Gelände durch die Bildung von sekundären Arsen-Phasen (Skorodit, Eisen-Sulfoarsenat, amorphe Eisenarsenate) in den Bergwerksrückständen wirksam zurückgehalten. Die Rückhaltung geschieht zudem durch Mitfällungs- bzw. Sorptionsprozesse an Eisenoxiden und –hydroxiden sowie durch die Sorption an Tonmineralen. Zusätzlich wirken bei gelöstem As und Sb auch Verdünnungprozesse im Abfluss des Big River. Aus diesem Grund ist eine Freisetzung trotz der extrem hohen As- und Sb-Gehalte in den Bergwerksabfällen begrenzt und führt nur zu relativ geringen Gehalten im Abwasser des Bergwerksstandortes.

Atenuación de metaloides en las aguas que escurren de una histórica mina de oro orogénico en Nueva Zelanda


Los metaloides arsénico y antimonio son movilizados a través de la descomposición de arsenopirita, pirta y estibnita en la histórica mina Big River. Los contenidos en los sustratos sólidos alcanzan niveles de hasta ≈25 % p/p As y 3,6 % p/p Sb, pero sus concentraciones en el agua de mina son sólo localmente elevadas (hasta 0,85 mg/L de As y 0,007 mg/L de Sb disuelto). El agua que drena a través de los residuos está caracterizada por pH neutro pero en el sitio de procesamiento original de la mina, la oxidación de concentrados de sulfuros ha producido condiciones ácidas tanto en el agua (pH 3,8) como en los residuos sólidos (pH 2–4). Las concentraciones de los metaloides disueltos están siendo efectivamente atenuados en el sitio a través de la formación de fases secundarias de As en los residuos mineros incluyendo escorodita, sulfoarsenato de hierro y arseniato de hierro amorfo. La atenuación también ocurre por co-precipitación y adsorción sobre óxidos e hidróxidos de hierro y adsorción sobre las superficies de los minerales arcillosos. Estos procesos son complementados por la dilución del As y Sb disueltos que provoca el río Big River. Así, independientemente de los altos valores de As y Sb en los residuos mineros, la movilización de los metaloides es limitada, resultando en relativamente bajas concentraciones en el agua que deja el sitio.



大河矿(Big River Mine)的毒砂、黄铁矿和辉锑矿的分解使类金属砷和锑活化。虽然采场固体废物底质中的砷和锑含量分别达到25 wt%和 3.6 wt%,但它们在矿井废水中的浓度仅局部升高,溶解态砷和锑的浓度分别为0.85 mg/L和0.007 mg/L。矿井废水的pH值中等,但是冶炼场浓缩硫化物的氧化使水环境酸化,水pH值3.8,固体废弃物paste pH为2-4。溶解类金属的浓度由于采矿固体废物生成次生砷化物(如臭葱石、硫砷酸铁和非晶质砷酸铁)而明显衰减;同时,共同沉淀作用、铁氧化物和氢氧化物的吸附作用和泥岩的表面吸附作用也都使溶解类金属浓度衰减。大河矿(Big River)进行一步稀释了溶解态砷和锑。因此,即使采矿废弃矿石含有丰富的砷和锑,但其类金属化合物活性有限,排放废水中浓度较低。



This study was funded by the NZ Ministry of Business, Innovation, and Employment and the University of Otago. The Department of Conservation kindly permitted sampling at the historic site. We are grateful to Dave Hodson for his assistance in the field and to OceanaGold Ltd for logistical support. Technical assistance from Kat Lilly and Damian Walls is appreciated. Helpful reviews by two anonymous referees and Dr. R. Kleinmann improved the manuscript.


  1. Álvarez-Ayuso E, Otones V, Murciego A, García-Sánchez A (2013) Evaluation of different amendments to stabilize antimony in mining polluted soils. Chemosphere 90:2233–2239CrossRefGoogle Scholar
  2. ANZECC (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New ZealandGoogle Scholar
  3. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Assoc, Washington DCGoogle Scholar
  4. Ashley P, Lottermoser B (1999) Arsenic contamination at the Mole River mine, northern New South Wales. Aust J Earth Sci 46(6):861–874CrossRefGoogle Scholar
  5. Ashley P, Craw D, Graham B, Chappell D (2003) Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J Geochem Explor 77(1):1–14CrossRefGoogle Scholar
  6. Barry J, Armstrong B (1993) The history and mineral resources of the Reefton goldfield. Resources Information Report 15, Energy and Resources Division, Ministry of Commerce, p 59Google Scholar
  7. Blakemore L, Searle P, Daly B (1987) Methods for chemical analysis of soils. NZ Soil Bur Sci Rep 80:71–76Google Scholar
  8. Bowell R (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9(3):279–286CrossRefGoogle Scholar
  9. Boyle R, Jonasson I (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2(3):251–296CrossRefGoogle Scholar
  10. Christie A, Brathwaite R (2003) Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield, South Island, New Zealand. Miner Deposita 38(1):87–107CrossRefGoogle Scholar
  11. Christie A, Corner N, Bierlein F, Smith P, Ryan R, Arne D (2000) Disseminated gold in turbidite-hosted gold deposits of Reefton (South Island, New Zealand), Victoria (Australia) and Nova Scotia (Canada). In: Proceeding NZ Minerals and Mining Conference, Crown Minerals, Ministry of Economic Development, Wellington, New Zealand, pp 105–118Google Scholar
  12. Christie A, Barker R, Brathwaite R (2010) Mineral resource assessment of the West Coast Region, New Zealand. GNS Science Report 2010/61, p 235Google Scholar
  13. Cooper R (1974) Age of the Greenland and Waiuta Groups, South Island, New Zealand (Note). NZ J Geol Geophys 17(4):955–962CrossRefGoogle Scholar
  14. Courtin-Nomade A, Bril H, Neel C, Lenain J-F (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguialès, Aveyron, France. Appl Geochem 18(3):395–408CrossRefGoogle Scholar
  15. Craw D, Chappell D (2000) Metal redistribution in historic mine wastes, Coromandel Peninsula, New Zealand. NZ J Geol Geophys 43(2):187–198CrossRefGoogle Scholar
  16. Craw D, Falconer D, Youngson J (2003) Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem Geol 199(1):71–82CrossRefGoogle Scholar
  17. Craw D, Wilson N, Ashley P (2004) Geochemical controls on the environmental mobility of Sb and As at mesothermal antimony and gold deposits. Appl Earth Sci 113(1):3–10CrossRefGoogle Scholar
  18. DeSisto S, Jamieson H, Parsons M (2011) Influence of hardpan layers on arsenic mobility in historical gold mine tailings. Appl Geochem 26(12):2004–2018CrossRefGoogle Scholar
  19. Druzbicka J, Craw D (2013) Evolving metalloid signatures in waters draining from a mined orogenic gold deposit, New Zealand. Appl Geochem 31:251–264CrossRefGoogle Scholar
  20. Filippi M, Machovič V, Drahota P, Böhmová V (2009) Raman microspectroscopy as a valuable additional method to X-ray diffraction and electron microscope/microprobe analysis in the study of iron arsenates in environmental samples. Appl Spectrosc 63(6):621–626CrossRefGoogle Scholar
  21. Foster A, Brown G Jr, Tingle T, Parks G (1998) Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am Mineral 83(5):553–568Google Scholar
  22. Frau F, Ardau C (2004) Mineralogical controls on arsenic mobility in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining. Mineral Mag 68(1):15–30CrossRefGoogle Scholar
  23. Fuller C, Davis J, Waychunas G (1993) Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta 57(10):2271–2282CrossRefGoogle Scholar
  24. Gage M (1948) The geology of the Reefton quartz lodes. NZ Geol Survey Bull 42, Wellington, New ZealandGoogle Scholar
  25. Gal J, Hursthouse A, Cuthbert S (2007) Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). J Environ Sci Health A 42(9):1263–1274CrossRefGoogle Scholar
  26. Garcia-Sanchez A, Alvarez-Ayuso E (2003) Arsenic in soils and waters and its relation to geology and mining activities (Salamanca Province, Spain). J Geochem Explor 80(1):69–79CrossRefGoogle Scholar
  27. Gieré R, Sidenko N, Lazareva E (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18(9):1347–1359CrossRefGoogle Scholar
  28. Groves D, Goldfarb R, Gebre-Mariam M, Hagemann S, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13(1):7–27CrossRefGoogle Scholar
  29. Haffert L, Craw D (2008a) Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Appl Geochem 23(6):1467–1483CrossRefGoogle Scholar
  30. Haffert L, Craw D (2008b) Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand. Sci Total Environ 405(1):286–300CrossRefGoogle Scholar
  31. Haffert L, Craw D (2009) Field quantification and characterisation of extreme arsenic concentrations at a historic mine processing site, Waiuta, New Zealand. NZ J Geol Geophys 52(3):261–272CrossRefGoogle Scholar
  32. Haffert L, Craw D (2010) Geochemical processes influencing arsenic mobility at Bullendale historic gold mine, Otago, New Zealand. NZ J Geol Geophys 53(2–3):129–142CrossRefGoogle Scholar
  33. Haffert L, Craw D, Pope J (2006) Quantification and controls on As distribution in Westland, New Zealand. In: Proceeding, 39th AusIMM New Zealand Branch Annual Conference.
  34. Haffert L, Craw D, Pope J (2010) Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand. NZ J Geol Geophys 53(2–3):91–101CrossRefGoogle Scholar
  35. Henderson J (1917) The geology and mineral resources of the Reefton Subdivision, Westport and North Westland Division. NZ Geol Survey Bull 18, Wellington, New ZealandGoogle Scholar
  36. Hewlett L, Craw D, Black A (2005) Comparison of arsenic and trace metal contents of discharges from adjacent coal and gold mines, Reefton, New Zealand. Mar Freshwater Res 56(7):983–995CrossRefGoogle Scholar
  37. Jain A, Raven K, Loeppert R (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environ Sci Technol 33(8):1179–1184CrossRefGoogle Scholar
  38. Jambor J, Dutrizac J (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98(7):2549–2586CrossRefGoogle Scholar
  39. Krause E, Ettel V (1989) Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy 22(3):311–337CrossRefGoogle Scholar
  40. Laird M, Shelley D (1974) Sedimentation and early tectonic history of the Greenland Group, Reefton, New Zealand. NZ J Geol Geophys 17(4):839–854CrossRefGoogle Scholar
  41. Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70(12):2942–2956CrossRefGoogle Scholar
  42. Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts. Springer, Berlin, GermanyCrossRefGoogle Scholar
  43. Milham L, Craw D (2009) Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand. NZ J Geol Geophys 52(3):247–259CrossRefGoogle Scholar
  44. Mitsunobu S, Takahashi Y, Terada Y, Sakata M (2010) Antimony (V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Environ Sci Technol 44(10):3712–3718CrossRefGoogle Scholar
  45. Pierce M, Moore C (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16(7):1247–1253CrossRefGoogle Scholar
  46. Ritchie V, Ilgen A, Mueller S, Trainor T, Goldfarb R (2013) Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chem Geol 335:172–188CrossRefGoogle Scholar
  47. Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93(1–4):117–136Google Scholar
  48. Salzsauler K, Sidenko N, Sherriff B (2005) Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Appl Geochem 20(12):2303–2314CrossRefGoogle Scholar
  49. Tulloch A (1983) Granitoid rocks of New Zealand-a brief review. Geol Soc Am Mem 159:5–20CrossRefGoogle Scholar
  50. US-EPA (2007) Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. US-EPA Method 6200, US Environmental Protection Agency, Washington DCGoogle Scholar
  51. Waychunas G, Rea B, Fuller C, Davis J (1993) Surface chemistry of ferrihydrite: part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57(10):2251–2269CrossRefGoogle Scholar
  52. Wilson N, Craw D, Hunter K (2004a) Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ Pollut 129(2):257–266CrossRefGoogle Scholar
  53. Wilson N, Craw D, Hunter K (2004b) Contributions of discharges from a historic antimony mine to metalloid content of river waters, Marlborough, New Zealand. J Geochem Explor 84(3):127–139CrossRefGoogle Scholar
  54. Winterbourn M, Collier K (1987) Distribution of benthic invertebrates in acid, brown water streams in the South Island of New Zealand. Hydrobiologia 153(3):277–286CrossRefGoogle Scholar
  55. Wright L (1993) Big River quartz mine 1882–1942: a worthwhile speculation. Friends of Waiuta Inc, ReeftonGoogle Scholar
  56. Xi J, He M, Lin C (2010) Adsorption of antimony (V) on kaolinite as a function of pH, ionic strength and humic acid. Environ Earth Sci 60(4):715–722CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geology DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations