Skip to main content
Log in

Lepidocrocite Formation Kinetics from Schwertmannite in Fe(II)-Rich Anoxic Alkaline Medium

Kinetik der Lepidokrokitbildung aus Schwertmannit in Fe(II)-reichen anoxischen Medien

Cinética de formación de epidocrocita a partir de schwertmannita en un medio alcalino anóxico rico en Fe(II)

无氧、碱性、富铁(FeII)条件下施氏矿生成纤铁矿的动力学特征

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Effect of dissolved ferrous iron [Fe(II)aq = 0–1.0 mM] on stability of schwertmannite containing ≈40 wt% Fe(III) and 15 wt% SO4 2− [with and without 0.92 wt% sorbed As(III)] was investigated in anoxic alkaline conditions at pH 8 for 154 h. New product formation, sulfate, iron, and arsenic release kinetics were examined using diffractogram, microscopic, spectroscopic and geochemical techniques. Both schwertmannite types were incompletely transformed to lepidocrocite with a platy tabular morphometry. Product formation was accelerated with increased Fe(II)aq, while sorbed As(III) markedly hindered lepidocrocite formation. Almost 50–57 % of the SO4 2− was released from schwertmannite within 154 h in the absence of Fe(II)aq, while its presence inhibited its release. Some of the sorbed As(III) was released during lepidocrocite formation with a maximum in the presence of 1.0 mM Fe(II)aq (0.02 %, 21 µg L−1), presumably due to catalytic action of Fe(II)aq on schwertmannite dissolution, which likely re-precipitated as lepidocrocite with considerable surface-adsorbed SO4 2−.

Zusammenfassung

In Versuchen wurde der Effekt von gelöstem zweiwertigem Eisen (Fe(II)aq = 0-1,0 mM) auf die Stabilität von Schwertmannit mit 40 Ma.- % Fe(III) und 15 Ma.- % SO 2-4 (mit und ohne 0,93 Ma.- % sorbiertes As(III)) unter anoxischen Bedinungen bei pH-Werten um 8 über 154 h untersucht. Die Bildung neuer Reaktionsprodukte sowie die Kinetik der Freisetzung von Sulfat, Eisen und Arsen wurde mit Hilfe von diffraktometrischen, mikroskopischen, spektroskopischen und geochemischen Methoden untersucht. Beide Schwertmannittypen wurden unvollständig in Lepidokrokit umgewandelt. Die Umwandlung wurde durch eine erhöhte Fe(II)aq-Konzentration beschleunigt. Dagegen wurde die Bildung von Lepidokrokit durch sorbiertes As(III) stark behindert. Bei Abwesenheit von Fe(II)aq wurden etwa 50 % bis 57 % des SO 2-4 innerhalb von 154 h freigesetzt, während die Anwesenheit die Freisetzung hemmt. Ein Teil des sorbierten As(III) wurde während der Lepidokrokitbildung freigesetzt. Die maximale Freisetzung erfolgte bei Anwesenheit von 1,0 mM Fe(II)aq (0,02 %, 21 µg/L), vermutlich durch die katalytische Wirkung des Fe(II)aq auf die Lösung von Schwertmannit. An der Oberfläche des gebildeten Lepidokrokits adsorbiert überwiegend SO4 2−.

Resumen

Se investigó el efecto de hierro ferroso disuelto (Fe(II)ac = 0-1,0 mM) sobre la estabilidad de schwertmannita con un contenido de ≈ 40 % p/p de Fe(III) y 15 % p/p de SO42- (con y sin 0,92 % p/p de As(III) adsorbido) bajo condiciones alcalinas anóxicas, a pH 8, durante 154 h. La formación de nuevos productos y las cinéticas de disolución de sulfato, hierro y arsénico se examinaron usando técnicas microscópicas, espectroscópicas, geoquímicas y de difracción. Ambos tipos de schwertmannita fueron transformados incompletamente en lepidocrocita con una morfometría tipo tableta. La formación de producto fue acelerada por el incremento de la concentración de Fe(II)ac mientras que el As(III) sorbido dificultó marcadamente la formación de lepidocrocita. Casi 50-57 % de SO42- fue liberado de la schwertmannita dentro de las 154 h en ausencia de Fe(II)ac aunque su presencia inhibió esa liberación. Parte del As(III) sorbido fue liberado durante la formación de lepidocrocita con un máximo en la presencia de 1,0 mM de Fe(II)ac (0,02 %, 21 µg L-1), probablemente debido a la acción catalítica de Fe(II)ac sobre la disolución de la schwertmannita dissolution, que reprecipitó como lepidocrocita con una considerable adsorción superficial de SO42-.

摘要

本文研究了在无氧和碱性(pH=8)条件下,可溶亚铁离子〈Fe(II)aq=0-1.0 mM〉在154小时反应时间内对施氏矿〈40%的Fe(III)、15%的SO 2-4 、含或不含0.92%的吸附As(III)〉的稳定性作用。通过衍射试验、显微技术、分光光谱学和地球化学技术研究了该反应过程中新生成物、硫酸根离子、铁离子、砷释放规律的动力学特征。施氏矿不完全地转化为扁平状纤铁矿。新生成物由于可溶亚铁离子增多而增大,而吸附的As(III)却阻碍了纤铁矿生成。在可溶亚铁离子不足时,几乎50-57%的SO 2-4 在154小时内从施氏矿中释放出来; 而当亚铁离子充足时,抑制了SO 2-4 释出。当亚铁离子浓度达最大量时(1.0 mM,或0.02%, 21 µg L−1),部分吸附As(III)也同时释放出来。推测原因是:可溶Fe(II)aq对施氏矿的溶解具有催化化用,再沉淀成的纤铁矿具有更大的表面积来吸附SO 2-4

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acero P, Ayora C, Torrento C, Nieto J (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139

    Article  Google Scholar 

  • Andreeva D, Mitov I, Tabakova T, Mitrov V, Andreev A (1995) Influence of iron (II) on the transformation of ferrihydrite into goethite in acid medium. Mater Chem Phys 41:146–149

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in aid mine waters. Geochim Cosmochim Acta 54:2743–2758

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  Google Scholar 

  • Boily J, Gassman PL, Peretyazhko T, Szanyi J, Zachara JM (2010) FTIR spectral components of schwertmannite. Environ Sci Technol 44:1185–1190

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2007) Reductive transformation of iron and sulfur in schwertmannite rich accumulations associated with acidified coastal lowlands. Geochim Cosmochim Acta 71:4456–4473

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron–sulfide formation. Geochim Cosmochim Acta 72:4551–4564

    Article  Google Scholar 

  • Burton ED, Johnston SG, Watling K, Bush RT, Keene AF, Sullivan LA (2010) Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Environ Sci Technol 44:2016–2021

    Article  Google Scholar 

  • Carlson L, Bigham JM, Schwertmann U (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719

    Article  Google Scholar 

  • Collins RN, Jones AM, Waite TD (2010) Schwertmannite stability in acidified coastal environments. Geochim Cosmochim Acta 74:482–496

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2006) The iron oxides, structure, properties, reactions, occurences and uses. Wiley-VCH Gmbh & Co., Weinheim

    Google Scholar 

  • Cornell RM, Schneider W, Giovanoli R (1989) Phase transformations in the ferrihydrite/cysteine system. Polyhed 8:2829–2836

    Article  Google Scholar 

  • Courtin-Normade A, Grosbois C, Bril H, Roussel C (2005) Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl Geochem 20:383–396

    Article  Google Scholar 

  • Cudennec Y, Lecerf A (2006) The transformation of ferrihydrite into goethite or hematite, revisited. J Solid State Chem 179:716–722

    Article  Google Scholar 

  • Davidson LE, Shaw S, Benning LG (2008) The kinetics and mechanism of schwertmannite transformation to goethite and hematite under alkaline conditions. Am Mineral 93:1326–1337

    Article  Google Scholar 

  • Egal M, Casiot C, Morin G, Parmentier M, Bruneel O, Lebrun S, Elbaz-Poulichet F (2009) Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem Geol 265:432–441

    Article  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    Article  Google Scholar 

  • Glombitza F, Janneck E, Arnold I, Rolland W, Uhlmann W (2007) Eisenhydroxisulfate aus der Bergbauwasserbehandlung als Rohstoff. Heft 110 der Schriftenreihe der GDMB, S, pp 31–40, ISBN 3-935797-35-4

  • Henderson SP, Sullivan LA (2010) Low temperature transformation of schwertmannite to hematite with associated CO2, SO and SO2 evolution. In: Proceedings of 19th world congress of soil science, soil solutions for a changing world, pp 72–75

  • Jeon B, Dempsey BA, Burgos WD (2003) Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environ Sci Technol 37:3309–3315

    Article  Google Scholar 

  • Johnston SG, Keene AF, Burton ED, Bush RT, Sullivan LA (2011) Iron and arsenic cycling in intertidal surface sediments during wetland remediation. Environ Sci Technol 45:2179–2185

    Article  Google Scholar 

  • Jolivet J, Tronc E, Chanéac C (2006) Iron oxides: from molecular clusters to solid; a nice example of chemical versatility. Comptes Rendus Geosci 338:488–497

    Article  Google Scholar 

  • Jönsson J, Persson P, Sjöberg S, Lovgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Appl Geochem 20:179–191

    Article  Google Scholar 

  • Knorr K, Blodau C (2007) Controls on schwertmannite transformation rates and products. Appl Geochem 22:2006–2015

    Article  Google Scholar 

  • Kumpulainen S, Räisänen ML, Von der Kammer F, Hofmann T (2008) Ageing of synthetic and natural schwertmannites at pH 2–8. Clay Min 43:437–448

    Article  Google Scholar 

  • LaKind JS, Stone AT (1989) Reductive dissolution of goethite by phenolic reductants. Geochim Cosmochim Acta 53:961–971

    Article  Google Scholar 

  • Larsen O, Postma D (2001) Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochim Cosmochim Acta 65:1367–1379

    Article  Google Scholar 

  • Liu H, Wei Y, Sun Y (2005) The formation of hematite from ferrihydrite using Fe(II) as a catalyst. J Mol Catal A Chem 226:135–140

    Article  Google Scholar 

  • Liu H, Wei Y, Li P, Zhang Y, Sun Y (2007a) Catalytic synthesis of nanosized hematite particles in solution. Mater Chem Phys 102:1–6

    Article  Google Scholar 

  • Liu H, Li P, Zhu M, Wei Y, Sun Y (2007b) Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite. J Solid State Chem 180:2121–2128

    Article  Google Scholar 

  • Liu H, Guo H, Li P, Wei Y (2009) Transformation from δ-FeOOH to hematite in the presence of trace Fe(II). J Phys Chem Solid 70:186–191

    Article  Google Scholar 

  • Martell E, Smith RM (1982) Critical stability constants. Plenum Press, New York

    Book  Google Scholar 

  • McArthur JM, Ravenscroft P, Safiullah S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  Google Scholar 

  • Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere 68:2080–2084

    Article  Google Scholar 

  • Morin G, Juillot F, Casiot C, Bruneel O, Personné J, Elbaz-Poulichet F, Leblang M, Ildefonse P, Calas G (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoule`s acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37:1705–1712

    Article  Google Scholar 

  • Paikaray S, Peiffer S (2010) Dissolution kinetics of sulfate from schwertmannite under variable pH conditions. Mine Water Environ 29:263–269

    Article  Google Scholar 

  • Paikaray S, Peiffer S (2012) Abiotic schwertmannite transformation kinetics and the role of sorbed As(III). Appl Geochem 27:590–597

    Article  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2011) Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway. Chem Geol 283:134–142

    Article  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2012) As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Chemosphere 86:557–564

    Article  Google Scholar 

  • Paikaray S, Essilfie-Dughan J, Göttlicher J, Pollok K, Peiffer S (2014) Redox stability of As(III) on schwertmannite surfaces. J Hazard Mater 265:208–216

    Article  Google Scholar 

  • Pederson HD, Postma D, Jakobsen R, Larsen O (2005) Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta 69:3967–3977

    Article  Google Scholar 

  • Pederson HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70:4116–4129

    Article  Google Scholar 

  • Peretyazhko T, Zachara JM, Boily JF, Xia Y, Gassman PL, Arey BW, Burgos WD (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chem Geol 262:169–178

    Article  Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197

    Article  Google Scholar 

  • Schroth AW, Parnell RA (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl Geochem 20:907–917

    Article  Google Scholar 

  • Schwertmann U, Carlson L (2005) The pH-dependent transformation of schwertmannite to goethite at 25°C. Clay Miner 40:63–66

    Article  Google Scholar 

  • Schwertmann U, Friedl J, Stanjek H (1999) From Fe(III) ions to ferrihydrite and then to hematite. J Colloid Interface Sci 209:215–223

    Article  Google Scholar 

  • Suter D, Banwart S, Stumm W (1991) Dissolution of hydrous iron(III) oxides by reductive mechanisms. Langmuir 7:809–813

    Article  Google Scholar 

  • Tabatabai MA (1974) A rapid method for determination of sulfate in water samples. Environ Lett 7:237–243

    Article  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama G (1974) Spectrophotometric determination of iron(II) with 1, 10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318

    Article  Google Scholar 

  • Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng C 26:588–592

    Article  Google Scholar 

  • Webster JG, Swedlund PJ, Webster KS (1998) Trace metal adsorption onto an acid mine drainage iron (III) oxy hydroxy sulfate. Environ Sci Technol 32:1361–1368

    Article  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic eviden:ce for Fe(II)–Fe(III) electron transfer at the Fe oxide–water interface. Environ Sci Technol 38:4782–4790

    Article  Google Scholar 

  • Winland RL, Traina SJ, Bigham JM (1991) Chemical composition of ochreous precipitates from Ohio coal mine drainage. J Environ Qual 20:452–460

    Article  Google Scholar 

  • Yee N, Shaw S, Benning LG, Nguyen TH (2006) The rate of ferrihydrite transformation to goethite via the Fe(II) pathway. Am Miner 91:92–96

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Academic Exchange Service (DAAD) and the Geotechnologien programme (BMBF, No-03G0714A) and was performed at the University of Bayreuth, Germany. Dr. Janneck (GEOS, Freiburg) provided the schwertmannite sample. We thank the reviewers for their suggestions on how to improve the data presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Paikaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paikaray, S., Peiffer, S. Lepidocrocite Formation Kinetics from Schwertmannite in Fe(II)-Rich Anoxic Alkaline Medium. Mine Water Environ 34, 213–222 (2015). https://doi.org/10.1007/s10230-014-0309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0309-1

Keywords

Navigation