Skip to main content

Advertisement

Log in

Emergy and Carbon Footprint Analysis of the Construction of Passive and Active Treatment Systems for Net Alkaline Mine Drainage

Analyse von Emergie und Kohlenstoff-Fußabdruck der Konstruktion passiver und aktiver Aufbereitungssysteme für netto-alkalische Bergbauwässer

Análisis “emergy” y de huella de carbono en la construcción de sistemas activos y pasivos de tratamiento de drenajes de minas alcalinos

碱性废水被动与主动处理系统的能值分析与碳足迹分析

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Multi-criteria sustainability assessments were completed for the construction of a net-alkaline mine drainage passive treatment system (PTS) in northeastern Oklahoma to compare resource use and greenhouse gas emissions with a hypothetical active treatment system (ATS) alternative. Emergy analysis, an environmental accounting method assessing resource use, and carbon footprint analysis, a tool to evaluate greenhouse gas emissions, were completed for the construction of both systems. Assessing sustainability using multiple criteria is important in evaluating systems on the basis of resource use and environmental impact. Construction of the hypothetical ATS required seven times more emergy purchased from the economy and emitted three times more carbon dioxide equivalents than construction of the PTS. Concrete was the largest factor in both the emergy analysis (ATS and PTS) and carbon footprint (ATS only). Diesel fuel was the largest factor in the carbon footprint of PTS construction. This multi-criteria sustainability assessment shows that a hypothetical ATS alternative to the PTS would have used more resources and emitted more greenhouse gases during construction.

Zusammenfassung

An Hand mehrfacher Kriterien wurden Nachhaltigkeitseinschätzungen für die Konstruktion eines passiven Aufbereitungssystems (PTS) für netto-alkalische Bergbauwässer im nordöstlichen Oklahoma erstellt, um den Verbrauch von Ressourcen und die Freisetzung von Treibhausgas mit der hypothetischen Variante eines aktiven Aufbereitungssystems (ATS) zu vergleichen. Für die Konstruktion beider Systeme wurde eine Emergieanalyse, welche der umweltbezogenen Bilanzierung und Einschätzung des Ressourcenverbrauches dient, und eine Analyse des Kohlenstoff-Fußabdruckes, ein Werkzeug zur Einschätzung von Treibhausgasemission, ausgeführt. Die Nutzung mehrfacher Kriterien bei der Einschätzung von Nachhaltigkeit ist wichtig, wenn Systeme auf der Basis von Ressourcenverbrauch und Umwelteinwirkung bewertet werden. Die Konstruktion des hypothetischen ATS benötigte sieben mal mehr Emergie, aus der Wirtschaft angekauft, und verursachte eine dreifach höhere Emission von Kohlendioxyd-Äquivalenten als die Konstruktion des PTS. Beton war der größte Faktor sowohl in der Emergieanalyse (ATS und PTS) wie im Kohlenstoff-Fußabdruck (nur ATS). Dieseltreibstoff war der größte Faktor im Kohlenstoff-Fußabdruck der PTS-Konstruktion. Diese auf mehrfachen Kriterien beruhende Nachhaltigkeitseinschätzung zeigt, dass die Alternative eines hypothetischen ATS statt des PTS während der Erbauung mehr Ressourcen verbraucht und mehr Treibstoffgase emittiert hätte.

Resumen

Relevamientos de sustentabilidad utilizando multi-criterios fueron realizados para la construcción de un sistema de tratamiento pasivo de drenaje alcalino de mina (PTS) en el noreste de Oklahoma, comparando el uso de recursos y las emisiones de gases invernadero con la alternativa hipotética de construir un sistema de tratamiento activo (ATS). El análisis “emergy” -método ambiental de relevar el uso de recursos- y análisis de huella de carbono -herramienta para evaluar emisiones de gases invernadero- fueron utilizados en la comparación de la construcción de ambos sistemas. Los relevamientos de sustentabilidad usando criterios múltiples son importantes en la evaluación de sistemas sobre la base del uso de recursos y del impacto ambiental. La construcción de un hipotético ATS requeriría 7 veces más energía y emitiría 3 veces más dióxido de carbono que la construcción del PTS. El concreto fue el mayor factor en el análisis “emergy” (ATS y PTS) y en la huella de carbono (sólo ATS). El combustible diesel fue el mayor factor en la huella de carbono dejada por la construcción del PTS. Este relevamiento de sustentabilidad utilizando múltiples criterios muestra que una hipotética alternativa ATS al PTS hubiera usado más recursos y emitido mayor cantidad de gases invernadero durante su construcción.

摘要

利用多指标可持续评价系统评价了在俄克拉何马州(Oklahoma)东北部建立碱性废水被动处理系统(PTS)的环境影响,对比了构建被动处理系统(PTS)与假设的主动处理系统(ATS)的资源利用和温室气体排放差异。能值分析是一种用于评价资源利用程度的环境计算方法,碳足迹分析是一种评价温室气体排放量的分析工具。资源利用和环境影响是多标准可持续性评价的重要评价因素。构建假设的主动处理系统(ATS)比构建被动处理系统(PTS)能量消耗多7倍和二氧化碳排放多3倍。混凝土是主动与被动处理系统的能值分析和主动处理系统的碳足迹分析的最主要影响因素,柴油燃料是被动处理系统的碳足迹分析的最主要影响因素。多因素可持续性评价结果表明,构造假设的主动力处理系统比构建被动处理系统消耗更多资源、排放更多温室气体。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arias ME, Brown MT (2009) Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogotá Savannah, Colombia. Ecol Eng 35:1070–1078

    Article  Google Scholar 

  • Bastianoni S, Campbell DE, Ridolfi R, Pulselli FM (2009) The solar transformity of petroleum fuels. Ecol Model 220:40–50

    Article  Google Scholar 

  • Brandt-Williams S (2002) Folio #4: emergy of Florida agriculture. Center for Environmental Policy, Environmental Engineering Sciences, Univ of Florida, Gainesville, FL, USA

  • Brown M, Bardi E (2001) Folio #3: emergy of ecosystems. Center for Environmental Policy, Environmental Engineering Sciences, Univ of Florida, Gainesville, FL, USA

  • Brown MT, Ulgiati S (1997) Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecol Eng 9:51–69

    Article  Google Scholar 

  • Brown MT, Raugei M, Ulgiati S (2012) On boundaries and ‘investments’ in emergy synthesis and LCA: a case study on thermal vs. photovoltaic electricity. Ecol Indic 15:227–235

    Article  Google Scholar 

  • Buranakarn V (1998) Evaluation of recycling and reuse of building materials using the emergy analysis method. PhD Diss, Univ of Florida, Gainesville, FL, USA

  • CH2M Hill (2009) Mayer Ranch natural treatment system: as-built drawings and construction diary

  • Chen B, Chen ZM, Zhou Y, Zhou JB, Chen GQ (2009) Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing. Commun Nonlinear Sci Numer Simul 14:622–635

    Article  Google Scholar 

  • Cravotta CA, Parkhurst DL, Means B, McKenzie R, Morris H, Arthur W (2010) A geochemical module for “AMDTreat” to compute caustic quantity, effluent quality, and sludge volume. In: Proc, 27th National Conf of the American Society of Mining and Reclamation (ASMR), vol 27, pp 1413–1436

  • EPA (U.S. Environmental Protection Agency) (2011) Emissions factors for greenhouse gas inventories. US EPA, Washington

    Google Scholar 

  • Gusek J, Josselyn L, Agster W, Lofholm S, Millsap D (2011) Process selection and design of a passive treatment system for the Empire Mine State Historic Park, California. In: Proc, 28th National Conf ASMR, vol 28, pp 232–253

  • Hanegraaf MC, Biewinga EE, van derBijl G (1998) Assessing the ecological and economic sustainability of energy crops. Biomass Bioenergy 15:345–355

    Article  Google Scholar 

  • Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130:57–66

    Article  Google Scholar 

  • INAP (International Network for Acid Prevention) (2009) Global acid rock drainage guide (GARD guide). http://www.gardguide.com

  • Ingwersen WW (2010) Uncertainty characterization for emergy values. Ecol Model 221:445–452

    Article  Google Scholar 

  • IPCC (2013) Emissions Factor Database. In: Emiss. Factor Database. http://www.ipcc-nggip.iges.or.jp/EFDB/main.php

  • IPCC (International Panel on Climate Change) (2007) Changes in atmospheric constituents and in radiative forcing. International Panel on Climate Change. www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf. 234 p

  • Jamali-Zghal N, Amponsah NY, Lacarriere B, Le Corre O, Feidt M (2013) Carbon footprint and emergy combination for eco-environmental assessment of cleaner heat production. J Clean Prod 47:446–456

    Article  Google Scholar 

  • Jang M, Kwon H (2011) Pilot-scale tests to optimize the treatment of net-alkaline mine drainage. Environ Geochem Health 33:91–101. doi:10.1007/s10653-010-9353-3

    Article  Google Scholar 

  • Jordahl J, Frank P, Kealy M, Bays J (2009) Going beyond carbon footprint: elements of sustainability for treatment wetlands and design implications. In: Proc, water environment federation annual technical exhibition and conf, pp 1991–2005

  • Korre A, Durucan S (2009) Final report: aggregates industry life cycle assessment model: modelling tools and case studies. http://www2.wrap.org.uk. 40 p

  • McKenzie R (2005) Software update to better predict costs of treating mine drainage. Mine Water Environ 24:213–214

    Article  Google Scholar 

  • Milota M, West C, Hartley I (2005) Gate-to-gate life-cycle inventory of softwood lumber production. Wood Fiber Sci 37:47–57

    Google Scholar 

  • Nairn R (2013) Carbon dioxide impacts both passive treatment system effectiveness and carbon footprint. In: Proceedings of IMWA Annual Mtg. Golden, CO, USA, pp 673–679

  • Nairn R, LaBar J, Strevett K, Strosnider WH, Morris D, Neel CA, Garrido A, Santamaria B, Oxenford L, Kauk K, Carter S, Furneau B (2010) A large, multi-cell, ecologically engineered passive treatment system for ferruginous lead-zinc mine waters. In: Proc, IMWA Annual Mtg, Sydney. NS. Canada, pp 21–24

  • Nisbet M, Marceau M, VanGeem M (2002) Environmental life cycle inventory of portland cement concrete. Portland Cement Assoc, PCA R&D Serial No. 2137a

  • Odum HT (1996) Environmental accounting: emergy and environmental decision making. Wiley, New York

    Google Scholar 

  • Odum HT (2007) Environment, power, and society for the twenty-first century: the hierarchy of energy. Columbia Univ Press, New York

    Google Scholar 

  • Odum H, Wang F, Alexander, J Jr., Gilliland M, Miller M, Sendzimer J (1987) Energy analysis of environmental value. Center for Wetlands, Univ of Florida, Gainesville, FL, USA

  • Odum H, Brown M, Brandt-Williams S (2000) Folio #1: introduction and global budget. Center for Environmental Policy, Environmental Engineering Sciences, Univ of Florida, Gainesville, FL, USA

  • OSMRE (U.S. Office of Surface Mining, Reclamation and Enforcement) (2010) AMDTreat Software package. OSMRE, PA Dept of Environmental Protection, WV Dept of Environmental Protection, Pittsburgh, PA. http://amdtreat.osmre.gov/

  • Rosso D, Bolzonella D (2009) Carbon footprint of aerobic biological treatment of winery wastewater. Water Sci Technol 60:1185

    Article  Google Scholar 

  • Tilley D, Agostinho F, Campbell E, Ingwersen W, Lomas P, Winfrey BK, Zucaro A (2012) The International Society for the Advancement of Emergy Research (ISAER) Transformity Database. ISAER. http://www.emergydatabase.org

  • Toffolo A, Lazzaretto A (2002) Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design. Energy 27:549–567

    Article  Google Scholar 

  • Uggetti E, Ferrer I, Arias C, Brix H, Garcia J (2012) Carbon footprint of sludge treatment reed beds. Ecol Eng 44:298–302

    Article  Google Scholar 

  • Ulgiati S, Raugei M, Bargigli S (2006) Overcoming the inadequacy of single-criterion approaches to life cycle assessment. Ecol Model 190:432–442

    Article  Google Scholar 

  • Wiedmann T (2009) Editorial: carbon footprint and input–output analysis—an introduction. Econ Syst Res 21:175–186

    Article  Google Scholar 

  • Winfrey BK (2012) Material and emergy cycling in natural and human-dominated systems. PhD Diss, Univ of Maryland, College Park, MD, USA

  • Winfrey B, Nairn R, Tilley D, Strosnider W (2010) Assessing the benefits of a passive treatment system for mine drainage in northeast Oklahoma using emergy analysis. Proc ASMR 27:1388–1412

    Google Scholar 

  • WQS (Water Quality Subcommittee) (2000) Water quality improvement alternatives: task 2 report. Governor Frank Keating’s Tar Creek Superfund Site Task Force WQS, Oklahoma DEQ, Oklahoma City, OK, USA

  • Younger P, Banwart S, Hedin R (eds) (2002) Mine water: hydrology, pollution, remediation. Springer, Berlin

    Google Scholar 

  • Zhou JB, Jiang MM, Chen B, Chen GQ (2009) Emergy evaluations for constructed wetland and conventional wastewater treatments. Commun Nonlinear Sci Numer Simul 14:1781–1789

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Winfrey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winfrey, B.K., Nairn, R.W., Tilley, D.R. et al. Emergy and Carbon Footprint Analysis of the Construction of Passive and Active Treatment Systems for Net Alkaline Mine Drainage. Mine Water Environ 34, 31–41 (2015). https://doi.org/10.1007/s10230-014-0304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0304-6

Keywords

Navigation