Advertisement

Mine Water and the Environment

, Volume 34, Issue 4, pp 375–387 | Cite as

Evaporative Mine Water Controls on Natural Revegetation of Placer Gold Mines, Southern New Zealand

  • J. DruzbickaEmail author
  • C. Rufaut
  • D. Craw
Technical Article

Abstract

Surface and ground water runoff is controlled by impermeable substrates exposed by mining at two abandoned historic placer gold mines. The arid climate at these sites ensures that much of the mine water evaporates on these impermeable substrates to leave saline residues that include halite and bloedite encrustations up to 1 cm thick. Mine water compositions were reconstructed by leaching of the substrates. The dissolved load in the mine waters was derived primarily from marine aerosols in rainwater, with a minor component from water–rock interaction in the mines. Salination of the sites from mine water runoff has taken <100 years, and the saline soils have limited the colonisation of tall native and exotic plants. Instead, the mine soils now support a distinctive and rare inland salt-tolerant ecosystem with low-growing plants, and this natural rehabilitation has resulted in enhanced biodiversity for the area. Natural rehabilitation may be an appropriate management strategy for mines located in similar geological settings nearby, and elsewhere in the world.

Keywords

Groundwater Runoff Evaporation Salination Flora 

Regulierung der natürlichen Rekultivierung durch Verdunstung von Grubenwasser aus Goldseifenbergwerken, Süd-Neuseeland

Zusammenfassung

In zwei ehemaligen Goldseifenbergwerken wurden durch den Bergbau Grundwasserstauer freigelegt, die den Oberflächen- und Grundwasser-abfluss steuern. Das trockene Klima dieser Region führt dazu, dass der Großteil des Grubenwassers auf dieser undurchlässigen Schicht verdunstet. Die sich bildenden etwa 1 cm dicken Salzrückstände bestehen aus Halit und Blödit. Die chemische Zusammensetzung des Grubenwassers wurde durch Auslaugung der Substrate ermittelt. Die gelösten Feststoffe des Grubenwassers stammen im Wesentlichen aus marinen Aerosolen des Regenwassers. Ein kleiner Teil ist auf die Wechselwirkung zwischen Wasser und Gestein zurückzuführen. Die Versalzung des Gebietes durch den Grubenwasserabfluss erfolgte in weniger als 100 Jahren. Die Salzrückstände verhindern die Ansiedlung von großen einheimischen und exotischen Pflanzen. Der bergbaubeeinflusste Boden unterstützt ein charakteristisches salztolerantes Ökosystem mit langsam wachsenden Pflanzen. Diese natürliche Rehabilitation hat zu einer erhöhten Biodiversität des Gebietes geführt. Die natürliche Rehabilitation kann eine geeignete Strategie für Bergbaugebiete mit ähnlichen geologischen Bedingungen sein.

Controles de evaporación de agua de mina sobre la revegetación natural de minas de oro en el sur de Nueva Zelanda

Resumen

El escurrimiento de agua subterránea y agua superficial es controlado por sustratos ubicados sobre sustratos impermeables y expuestos por las prácticas mineras en dos sitios históricos de minas de oro actualmente abandonadas. El clima árido de estos sitios asegura que mayoritariamente el agua de mina ubicada sobre sustratos impermeables, se evapora dejando residuos salinos que incluyen incrustaciones de halita y bloedita de hasta 1 cm de espesor. Las composiciones del agua de minas se reconstruyeron por lixiviación de los sustratos. La carga disuelta en las aguas de mina derivada principalmente de aerosoles marinos en el agua de lluvia con un componente menor proveniente de la interacción roca-agua en las minas. La salinización de los sitios por escurrimiento del agua de mina ha tomado menos de 100 años y los suelos salinos han limitado la colonización por plantas nativas y exóticas. En su lugar, los suelos de mina ahora soportan un ecosistema particular que es halo-tolerante con plantas de bajo crecimiento y la rehabilitación natural ha provocado un incremento en la biodiversidad en el área. La rehabilitación natural puede ser una apropiada estrategia para minas localizadas en configuraciones geológicas similares en zonas cercanas y en cualquier lugar del mundo.

矿井水蒸发控制新西兰南部砂积金矿的自然修复

摘要

隔水下垫层控制着当地的地表和地下径流,两个废弃的砂积金矿揭露了该下垫层。干旱气候使矿井水在隔水下垫层上大量蒸发,生成含盐残余物,结成1cm厚的盐岩和白钠镁矾硬壳。下垫层的溶滤作用改变了矿井水化学成分。矿井水中的溶解荷载主要源自雨水中的海相气溶胶和少量矿井中的水-盐反应产物。径流形式排泄的矿井水盐化不足100年。盐碛土限制了本地和外来高大植被发育。然而,采矿扰动土壤维系着极具特色的、稀有的内地耐盐生态系统和低矮植被生长。这种自然修复功能丰富了当地生物多样性。自然修复不失为当地或全球其它类似地质背景地区矿井的合理管理策略。

Notes

Acknowledgments

This study was funded by the NZ Ministry of Business, Innovation, and Employment, and the University of Otago. Plant identifications, help, and information provided by Craig Wilson from the Department of Conservation, Alexandra office, were invaluable in understanding the rare ecosystems described here. We are grateful for additional information provided by John Barkla from the Department of Conservation, Dunedin office, and by David Lyttle with regards to plant occurrences and distribution at both sites. The Department of Conservation provided permission for substrate sampling of the Chapman Road Scientific Reserve. John Becker provided a geological base map, on which Fig. 4 is based.

References

  1. Allen RB (2000) Inland Lepidium recovery plan: 2000–2010. Threatened species recovery plan 32. Department of Conservation, WellingtonGoogle Scholar
  2. Allen RB, McIntosh PD (1997) Guidelines for conservation of salt pans in Central Otago. Science for Conservation 49, Department of Conservation, WellingtonGoogle Scholar
  3. Allen RB, McIntosh PD, Wilson JB (1997) The distribution of plants in relation to pH and salinity on inland saline/alkaline soils in Central Otago, New Zealand. New Zeal J Bot 35(4):517–523CrossRefGoogle Scholar
  4. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association (APHA), WashingtonGoogle Scholar
  5. Banks D, Younger P, Arnesen R, Iversen E, Banks S (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32(3):157–174CrossRefGoogle Scholar
  6. Banning NC, Lalor BM, Grigg AH, Phillips IR, Colquhoun I, Jones D, Murphy D (2011) Rehabilitated mine-site management, soil health and climate change. In: Bhupinder P, Cowie A, Yin Chan K (eds) Soil health and climate change, soil biology, vol 29. Springer, Berlin, pp 287–314CrossRefGoogle Scholar
  7. Bell L (2001) Establishment of native ecosystems after mining-Australian experience across diverse biogeographic zones. Ecol Eng 17(2):179–186CrossRefGoogle Scholar
  8. Bizoux JP, Brevers F, Meerts P, Graitson E, Mahy G (2004) Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belg J Bot 137:91–104Google Scholar
  9. Bradshaw A (2000) The use of natural processes in reclamation-advantages and difficulties. Landsc Urban Plan 51(2):89–100CrossRefGoogle Scholar
  10. Craw D (1994) Contrasting alteration mineralogy at an unconformity beneath auriferous terrestrial sediments, central Otago, New Zealand. Sedim Geol 92(1):17–30CrossRefGoogle Scholar
  11. Craw D, Beckett S (2004) Water and sediment chemistry of Sutton Salt Lake, east Otago, New Zealand. New Zeal J Mar Freshw Res 38(2):315–328CrossRefGoogle Scholar
  12. Douglas B (1986) Lignite resources of Central Otago. NZ Energy Research and Development Committee Publication P104. University of Auckland, AucklandGoogle Scholar
  13. Druzbicka J, Craw D (2013) Turbidity development and dissipation in paleoplacer gold deposits, southern New Zealand. Environ Earth Sci 68(6):1575–1589CrossRefGoogle Scholar
  14. Grant C, Campbell C, Charnock N (2002) Selection of species suitable for derelict mine site rehabilitation in New South Wales, Australia. Water Air Soil Pollut 139(1):215–235CrossRefGoogle Scholar
  15. Greenwood E, Gemmell R (1978) Derelict industrial land as a habitat for rare plants in S. Lancs. (v.c. 59) and W. Lancs. (v.c. 60). Watsonia 12(1):33–40Google Scholar
  16. Hancock GR, Loch RJ, Willgoose GR (2003) The design of post-mining landscapes using geomorphic principles. Earth Surf Process Landf 28(10):1097–1110CrossRefGoogle Scholar
  17. Hilson G, Murck B (2000) Sustainable development in the mining industry: clarifying the corporate perspective. Resour Policy 26(4):227–238CrossRefGoogle Scholar
  18. Holliday R, Johnson M, Bradshaw A (1979) Wildlife conservation and mining of alluvial tin reserves in southwest England. Biol Conserv 16(4):245–264CrossRefGoogle Scholar
  19. Hüttl RF, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88(8):322–329CrossRefGoogle Scholar
  20. Jacobson AD, Blum JD, Chamberlain CP, Craw D, Koons PP (2003) Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim Cosmochim Acta 67(1):29–46CrossRefGoogle Scholar
  21. Kelley RL (1954) Forgotten giant: the hydraulic gold mining industry in California. Pac Hist Rev 23(4):343–356Google Scholar
  22. Laurence D (2006) Optimisation of the mine closure process. J Clean Prod 14(3–4):285–298CrossRefGoogle Scholar
  23. Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357(1–3):38–53CrossRefGoogle Scholar
  24. Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts. Springer, BerlinCrossRefGoogle Scholar
  25. McHaina DM (2001) Environmental planning considerations for the decommissioning, closure and reclamation of a mine site. Int J Surf Min Reclam Environ 15(3):163–176CrossRefGoogle Scholar
  26. Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59CrossRefGoogle Scholar
  27. Menegaki ME, Kaliampakos DC (2006) Landscape analysis as a tool for surface mining design. Environ Plan B: Plan Des 33(2):185–196CrossRefGoogle Scholar
  28. Nicolau JM (2003) Trends in relief design and construction in opencast mining reclamation. Land Degrad Dev 14(2):215–226CrossRefGoogle Scholar
  29. Patrick BH (1989) The Lepidoptera of Central Otago salt-pans. Scientific Series No 3. Department of Conservation, DunedinGoogle Scholar
  30. Pentreath RJ (1994) The discharge of waters from active and abandoned mines. In: Hester R, Harrison R (eds) Mining and its environmental impact, vol 132, royal society of chemistry. Cambridge, UK, pp 121–131CrossRefGoogle Scholar
  31. Phillips GN, Hughes MJ (1996) The geology and gold deposits of the Victorian gold province. Ore Geol Rev 11(5):255–302CrossRefGoogle Scholar
  32. Raeside JD, Cutler EJB, Miller RB (1966) Soils and related irrigation problems of part of Maniototo Plains, Otago. NZ Soil Bureau Bull 23, WellingtonGoogle Scholar
  33. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023CrossRefGoogle Scholar
  34. Ridley AM, Pannell DJ (2005) The role of plants and plant-based research and development in managing dryland salinity in Australia. Anim Prod Sci 45(11):1341–1355CrossRefGoogle Scholar
  35. Rogers GM, Hewitt A, Wilson JB (2000) Ecosystem-based conservation strategy for Central Otago’s saline patches. Science for Conservation 166, Department of Conservation, WellingtonGoogle Scholar
  36. Rogers GM, Walker S, Tubbs M, Henderson J (2002) Ecology and conservation status of three “spring annual” herbs in dryland ecosystems of New Zealand. New Zeal J Bot 40(4):649–669CrossRefGoogle Scholar
  37. Rufaut CG, Craw D (2010) Geoecology of ecosystem recovery at an inactive coal mine site, New Zealand. Environ Earth Sci 60(7):1425–1437CrossRefGoogle Scholar
  38. Shu W, Ye Z, Zhang Z, Lan C, Wong M (2005) Natural colonization of plants on five lead/zinc mine tailings in southern China. Rest Ecol 13(1):49–60CrossRefGoogle Scholar
  39. Sklenička P, Kašparová I (2008) Restoration of visual values in a post-mining landscape. J Landsc Stud 1:1–10Google Scholar
  40. Smith F, Underwood B (2000) Mine closure: the environmental challenge. Min Technol 109(3):202–209CrossRefGoogle Scholar
  41. Todd A, Rufaut C, Craw D, Begbie M (2009) Indigenous plant species establishment during rehabilitation of an opencast coal mine, south–east Otago, New Zealand. New Zeal J For Sci 39:81–98Google Scholar
  42. Tordoff G, Baker A, Willis A (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1):219–228CrossRefGoogle Scholar
  43. Walker S, Lee W, Rogers GM (2004) Pre-settlement woody vegetation of Central Otago, New Zealand. New Zeal J Bot 42(4):613–646CrossRefGoogle Scholar
  44. Younger P (1997) The longevity of minewater pollution: a basis for decision-making. Sci Tot Environ 194:457–466CrossRefGoogle Scholar
  45. Youngson J (1995) Sulphur mobility and sulphur-mineral precipitation during early Miocene-Recent uplift and sedimentation in Central Otago, New Zealand. New Zeal J Geol Geophys 38(4):407–417CrossRefGoogle Scholar
  46. Youngson J, Craw D, Landis C, Schmitt K (1998) Redefinition and interpretation of late Miocene-Pleistocene terrestrial stratigraphy, Central Otago, New Zealand. New Zeal J Geol Geophys 41(1):51–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geology DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations