Skip to main content

Advertisement

Log in

Risk of Metal Mobilization from Redevelopment Activities in Hyperarid Climates: A Laboratory Experiment and Discussion

Riesgo de movilización metálica en las actividades de reurbanización en climas hiper-áridos: un experimento de laboratorio

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The reclamation and redevelopment of abandoned mine sites into parks, golf courses, and residential communities in arid and hyperarid regions has been caused, in part, to rising land costs. A laboratory experiment using three columns was monitored for 273 days to evaluate trace metal and metalloid availability. The sediment from the Three Kids Mine that was used in this study is documented to contain high levels of trace metals and metalloids. The experiment simulated agricultural activities over time to assess whether fertilizers would mobilize trapped contaminants. Results indicate that irrigation and fertilizers can provide conditions for Pb, Mn, Zn, Al, Ba, Cu, and As to become mobile, though on a limited basis. There was an increase in Pb, Mn, Zn, Al, Ba, Cu, and As within the first 30 days followed by a decrease at 90 days. Concentrations of Pb, Mn, and Zn increased at 273 days due to application of fertilizer-fortified waters. This study shows the potential for mobilized trace metals and metalloids to enter the wider environment after developmental activities are finished.

Zusammenfassung

Die Rekultivierung von stillgelegten Bergwerken in trockenen und extrem trockenen Regionen und deren Umgestaltung in Parks, Golfplätze und Wohngebiete hat teilweise hohe Kosten verursacht. Über 273 Tage wurde ein Laborversuch, bestehend aus drei Säulen, durchgeführt um die Mobilität von Spurenmetallen und Metalloiden in solchen Gebieten zu untersuchen. In der Studie wurden Sedimente von der Three Kids Mine verwendet. Diese enthalten hohe Gehalte an Spurenmetallen und Metalloiden. Der Versuch simulierte die landwirtschaftliche Nutzung über längere Zeit und untersuchte, inwieweit die Bewässerung und die Anwendung von Düngemitteln die Mobilität von Pb, Mn, Zn, Al, Ba, Cu und As erhöhen. Innerhalb der ersten 30 Tage zeigte sich eine Erhöhung für Pb, Mn, Zn, Al, Ba, Cu und As, gefolgt von einem Rückgang bis 90 Tage. Bis zum Versuchsende erhöhte sich durch Zugabe von düngemittelhaltigem Wasser die Konzentration von Pb, Mn und Zn. Die vorliegende Studie zeigt, dass mobilisierte Spurenmetalle und Metalloide auch nach Fertigstellung von Sanierungsmaßnahmen das Potential haben ausgetragen zu werden.

Resumen

La recuperación y reurbanización de sitios de minas abandonadas convertidos en parques, campos de golf y comunidades residenciales dentro de regiones áridas e hiper-áridas ha sido causada, en parte, por el aumento de los costos de la tierra. Un experimento de laboratorio usando 3 columnas fue monitoreado por 273 días para evaluar la disponibilidad de trazas de metales y metaloides. El sedimento de la mina Three Kids Mine usado en este estudio contiene altos niveles de metales y metaloides traza. El experimento simuló actividades agrícolas para determinar si los fertilizantes podrían movilizar contaminantes atrapados. Los resultados indican que la irrigación y los fertilizantes pueden proveer condiciones para que Pb, Mn, Zn, Al, Ba, Cu y As se vuelvan móviles aunque sobre una base limitada. Hubo un incremento en Pb, Mn, Zn, Al, Ba, Cu y As dentro de los primeros 30 días seguidos por un decrecimiento a los 90 días. Las concentraciones de Pb, Mn y Zn se incrementaron a los 273 días debido a la aplicación de aguas fortificadas con fertilizantes. Este estudio muestra el potencial de trazas de metales y metaloides para entrar en medio ambiente después de que las actividades de urbanización estén finalizadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albright WH, Benson CH, Waugh WJ (2010) Water balance covers for waste containment: principles and practice. ASCE Press, Reston

    Book  Google Scholar 

  • Arauzo-Sánchez M, Valladolid M, Martínez-Bastida JJ (2011) Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: implications for the implementation of the nitrates directive. J Hydrol 411(1):155–168

    Article  Google Scholar 

  • Atwater T (1970) Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol Soc Am Bull 81:3513–3536

    Article  Google Scholar 

  • Bech JN, Roca J, Barceló P, Duran P, Tume CP (2012) Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area). J Geochem Explor 113:1–130

    Article  Google Scholar 

  • Bell JW, Smith EI (1980) Geologic map of the Henderson Quadrangle. Map no. 67. Nevada Bureau of Mines and Geology, Reno

    Google Scholar 

  • Benson C, Sawangsuriya A, Trzebiatowski B, Albright W (2007) Post-construction changes in the hydraulic properties of water balance cover soils. J Geotech Geoenviron Eng 133(4):349–359

    Article  Google Scholar 

  • Besser JM, Finger SE, Church SE (2008) Impacts of historical mining on aquatic ecosystems-an ecological risk assessment. In: Church SE, von Guerard P, Finger SE, Chap D (eds) Integrated investigations of environmental effects of historical mining in the animas river watershed, San Juan County, Colorado. Professional paper 1651, USGS, Department of the Interior, pp 87–106. http://pubs.usgs.gov/pp/1651/downloads/Vol1_combinedChapters/vol1_chapD.pdf

  • Bevans HE, Lico MS, Lawrence SJ (1998) Water quality in the Las Vegas Valley area and the Carson and Truckee river basins, Nevada and California, 1992–1996. USGS circular 1170, Denver, CO, USA. http://pubs.usgs.gov/circ/circ1170/nvbr.book.pdf

  • Bhumbla DK, Keefer RF (1994) Arsenic mobilization and bioavailability in soils. In: Nriagu JO (ed) Arsenic in the environment, part 1: cycling and characterization. Wiley, New York City, pp 17–49

    Google Scholar 

  • Bureau of Reclamation (1995) Preliminary assessments—Henderson lead site, Clark County, Nevada. EPA ID no. NV5141190608, Boulder City, NV, USA

  • Cabaniss SE (1992) Synchronous fluorescence spectra of metal–fulvic acid complexes. Environ Sci Technol 26:1133–1139

    Article  Google Scholar 

  • Cai Y, Cabrera JC, Georgiadis M, Jayachandran K (2002) Assessment of arsenic mobility in the soils of some golf courses in south Florida. Sci Total Environ 291:123–134

    Article  Google Scholar 

  • Caille N, Tiffreau C, Leyval C, Morel JL (2003) Solubility of metals in an anoxic sediment during prolonged aeration. Sci Total Environ 301:239–250

    Article  Google Scholar 

  • Candela L, Fabregat S, Josa A, Suriol J, Vigues N, Mas J (2007) Assessments of soil and groundwater impacts by treated urban wastewater reuse. A case study: application on a golf course (Girona, Spain). Sci Total Environ 374:26–35

    Article  Google Scholar 

  • Chae G, Yun S, Mayer B, Choi B, Kim K, Kwon J, Yu S (2009) Hydrochemical and stable isotopic assessment of nitrate contamination in an alluvial aquifer underneath a riverside agricultural field. Agric Water Manag 96(12):1819–1827

    Article  Google Scholar 

  • Cory R, McKnight DM, Chin YP, Miller P, Jaros CL (2007) Chemical characteristics of fulvic acids from Arctic surface waters: microbial contributions and photochemical transformations. J Geophys Res Biogeosci 112. doi:10.1029/2006JG000343

  • Dinkins CP, Jones C (2007) Developing fertilizer recommendations for agriculture; developing fertilizer rates specific to your soil and crops should improve crop yield and profit. A self learning resource from MSU extension, file under: soil resource management, J-1 (fertilizer), MT200703AG New 7/07

  • Elkhatib EA, Bennett OL, Wright RJ (1984) Arsenite sorption and desorption in soils. Soil Sci Soc Am J 48:1025–1030

    Article  Google Scholar 

  • Esteves da Silva JCG, Machado AASC, Oliveira CJS, Pinto MSSDS (1998) Fluorescence quenching of anthoropogenic fulvic acids by Cu(II), Fe(III) and UO2 2+. Talanta 45:1155–1165

    Article  Google Scholar 

  • Forrester SW (2009) Provenance of the miocene–pliocene muddy creek formation near Mesquite, Nevada. UNLV thesis, Las Vegas, NV, USA

  • Google Maps (2013) https://maps.google.com/maps?q=henderson,+NV&ie=UTF-8&hl=en. (Accessed 29 July 2103)

  • Gustafsson JP, Jacks G (1995) Arsenic geochemistry in forested soil profiles as revealed by solid-phase studies. Appl Geochem 10(3):307–315

    Article  Google Scholar 

  • Haque S, Johannesson KH (2006a) Arsenic concentrations and speciation along a groundwater flow path: the Carrizo Sand aquifer, TX, USA. Chem Geol 228:57–71

    Article  Google Scholar 

  • Haque S, Johannesson KH (2006b) Concentrations and speciation of arsenic along a groundwater flow-path in the upper Floridian aquifer, FL, USA. Environ Geol 50:219–228

    Article  Google Scholar 

  • Haque SE, Tang J, Bounds WJ, Burdige DJ, Johannesson KH (2007) Arsenic geochemistry of the Great Dismal Swamp, VA, USA: possible organic matter controls. Aquat Geochem 13:289–308

    Article  Google Scholar 

  • Haque S, Ji J, Johannesson KH (2008) Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA. J Contam Hydrol 99:68–84

    Article  Google Scholar 

  • Hartland A, Fairchild IJ, Lead JR, Borsato A, Baker A, Frisia S, Baalousha M (2012) From soil to cave: transport of trace metals by natural organic matter in karst dripwaters. Chem Geol 304–305:68–82

    Article  Google Scholar 

  • Hartog NP, van Bergen F, de Leeuw JW, Griffioen J (2004) Reactivity of organic matter in aquifer sediments: geological and geochemical controls. Geochem Cosmochem Acta 68(6):1281–1292

    Article  Google Scholar 

  • Heck J, US Congressman (2011) Heck introduces three kids mine bill. http://heck.house.gov/press-release/heck-introduces-three-kids-mine-bill

  • Hooda PS (2010) Assessing bioavailability of soil trace elements. In: Hooda PS (ed) Trace elements in soils. Wiley, London, pp 229–265

    Chapter  Google Scholar 

  • Huang YC (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment, part 1: cycling and characterization. Wiley, New York City, pp 17–49

    Google Scholar 

  • Johannesson KH, Tang J (2009) Conservative behavior of arsenic and other oxyanions-forming trace elements in an toxic groundwater flow system. J Hydrol 378:13–28

    Article  Google Scholar 

  • Kaakinen J, Kuokkanen T, Kujala K, Valimaki I, Jokinen H (2012) The use of a five-stage sequential leaching procedure for risk assessment of heavy metals in waste rock utilized in railway ballast. Soil Sediment Contam 21(3):322–334

    Article  Google Scholar 

  • Kass A, Gavrieli I, Yechieli Y, Vengosh A, Starinsky A (2005) The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer. J Hydrol 300(1–4):314–331

    Article  Google Scholar 

  • Khan MJ, Azeem MT, Jan MT, Perveen S (2012) Effect of amendments on chemical immobilization of heavy metals in sugar mill contaminated soils. Soil Environ 31(1):55–66

    Google Scholar 

  • Krishnamurti GSR, Naidu R (2007) Chemical speciation and bioavailability of trace metals. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken. doi:10.1002/9780470175484.ch11

    Google Scholar 

  • Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4∙2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70:2942–2956

    Article  Google Scholar 

  • Lewis MA, Quarles RL, Dantin DD, Moore JC (2004) Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants. Mar Pollut Bull 48:254–262

    Article  Google Scholar 

  • Lombi E, Wenzel WW, Adriano DC (2000) Arsenic-contaminated soils: II. Remedial action. In: Wise DL, Tarantolo DJ, Inyang HI, Cichon EJ (eds) Remediation of hazardous waste contaminated soils. Marcel Dekker, New York City, pp 739–758

    Google Scholar 

  • Longwell CR, Pampeyan EH, Bowyer B, Roberts RJ (1965) Geology and mineral deposits of Clark County, Nevada. Nevada Bureau of Mines and Geology, bulletin 62, Reno, NV, USA

  • Magalhaes MCF (2002) Arsenic: an environmental problem limited by solubility. Pure Appl Chem 74(10):1843–1850

    Article  Google Scholar 

  • Mankin KR (2000) An integrated approach for modelling and managing golf course water quality and ecosystem diversity. Ecol Model 133:259–267

    Article  Google Scholar 

  • Manning BA, Goldberg S (1997) Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Sci 162:886–895

    Article  Google Scholar 

  • McBride M (1994) Environmental chemistry of soils. Wiley, New York City

    Google Scholar 

  • Nelson M (2003) Dollars and “sense” to improve soil properties. USGA Green Sect Rec 41(3):10–13

    Google Scholar 

  • New York State (1999) Department of Environmental Conservation (NYSDEC), part 703: surface water and groundwater quality standards and groundwater effluent limitations. Statutory authority: environmental conservation law, §§ 3-0301[2][m], 15-0313, 17-0301, 17-0809

  • Pearcy CA, Chevis DA, Haug TJ, Jeffries HA, Yang N, Tang J, Grimm DA, Johannesson KH (2011) Evidence of microbially mediated arsenic mobilization from sediments of the Aquia aquifer, Maryland, USA. Appl Geochem 26:575–586

    Article  Google Scholar 

  • Pichtel J, Vine B, Kuula-Väisänen P, Niskanen P (2001) Lead extraction from soils as affected by lead chemical and mineral forms. Environ Eng Sci 18(2):91–98

    Article  Google Scholar 

  • Rafiel B, Khodael AS, Khodabakhsh S, Hashemi M, Nejad MB (2010) Contamination assessment of lead, zinc, copper, cadmium, arsenic and antimony in Ahangaran mine soils, Malayer, west of Iran. Soil Sediment Contam 19:573–586

    Article  Google Scholar 

  • Robins RG (1987) Solubility and stability of scorodite, FeAsO4·2H2O: discussion. Am Mineral 72:842–844

    Google Scholar 

  • Robins RG (1990) The stability and solubility of ferric arsenate-an update. In: Gaskell DR (ed) Proceedings of the EPD congress ‘90, TMS annual meeting, pp 93–104

  • Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration. Academic Press, New York City, pp 490–517

    Google Scholar 

  • Ross C (2008) Preserving the culture while closing the holes-abandoned mine reclamation in Nevada. In: Presentation of the 30th annual national association of abandoned mine land program conference, Durango, CO, USA

  • Sanchez-Martin MJ, Lorenzo LF, Sanchez-Camazano M (2001) Leaching of Cd, Zn, Pb and Cu in packed and undisturbed columns of soils affected by the spill from a pyrite mine in the south of Spain. Soil Sediment Contam 10(4):359–373

    Article  Google Scholar 

  • Sims DB (1997) The migration of arsenic and lead in surface sediments at Three Kids Mine: Henderson, Nevada. MS thesis, University of Nevada, Las Vegas, NV, USA

  • Sims DB (2011) Fate of contaminants at an abandoned mining site in an arid environment. Unpublished dissertation, Kingston University, London, UK

  • Sims DB, Bottenberg BC (2008) Arsenic and lead contamination in wash sediments at historic Three Kids Mine—Henderson, Nevada: the environmental hazards associated with historic mining sites and their possible impact on water quality. J. Ariz Nev Acad Sci 40(1):16–19

  • Sims DB, Francis AW (2010) Anthropogenic influences on geogenic trace elements and contamination in wash sediments from historical mining activities in the Carnation wash system, Nelson, Nevada (USA). Int J Soil Sediment Water 3(1), article 2. http://scholarworks.umass.edu/intljssw/vol3/iss1/2

  • Sims DB, Hooda PS, Gillmore GK (2013) Sediment contamination along desert wash systems from historic mining sites in a hyperarid region of Southern Nevada, USA. Soil Sediment Contam 22(7):737–752

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1994) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York City

    Google Scholar 

  • Trengove JA (1956) The Three Kids manganese deposit, Clark County, NV: exploration, mining and processing. US Department of the Interior, Bureau of Mines, Washington, DC

    Google Scholar 

  • Tye AM, Young SD, Crout NMJ, Zhang H, Preston S, Bailey EH, Davison W, McGrath SP, Paton GI, Kilham K (2002) Predicting arsenic solubility in contaminated soils using isotopic dilution techniques. Environ Sci Technol 36:982–988

    Article  Google Scholar 

  • Udovic M, Plavc Z, Lestan D (2007) The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere 70(1):126–134

    Article  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1997) SW-846, test methods for evaluating solids and wastes—physical/chemical methods, CD-Rom. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Winter JG, Dillon PJ (2005) Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian shield. Environ Pollut 133:243–253

    Article  Google Scholar 

  • Wong HKT, Gauthier A, Nriagu JO (1999) Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci Total Environ 228:35–47

    Article  Google Scholar 

  • Yamashite Y, Jaffe R (2008) Characterizing the interactions between trace metals and dissolved organic matter using excitation–emission matrix and parallel factor analysis. Environ Sci Technol 42:7374–7379

    Article  Google Scholar 

  • Zaharescu DG, Hooda PS, Soler A (2009) Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees. Sci Total Environ 407(11):46–53

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Bruce Cunningham (Veritas Laboratories, Las Vegas, Nevada) for the use of his laboratory space and instruments for the analysis of samples. We would also like to thank Jeffery Smith and Dana Marie-Anat of the Bureau of Reclamation, Mead Station, for their time on site at Three Kids Mine during sampling. Finally, we thank the reviewers of this article who gave their time to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Sims.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sims, D.B., Keller, J.E. Risk of Metal Mobilization from Redevelopment Activities in Hyperarid Climates: A Laboratory Experiment and Discussion. Mine Water Environ 33, 307–316 (2014). https://doi.org/10.1007/s10230-014-0297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0297-1

Keywords

Navigation