Skip to main content
Log in

Mitigation of Acid Mine Drainage via a Revegetation Programme in a Closed Coal Mine in Southern New Zealand

Verminderung von saurem Grubenwasser durch eine Aufforstung in einem geschlossenen Kohlenbergwerk in Süd-Neuseeland

Atenuación del drenaje ácido de mina a través de un programa de revegetación en una mina de carbón cerrada en el sur de Nueva Zelanda

植被恢复计划减少新西兰南部闭坑煤矿的酸性废水排放

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Acid mine waters (pH 3–5) at the closed Wangaloa coal mine have resulted from surface runoff and groundwater seepage in contact with pyrite-bearing waste rock piles. The low nutrient content, physical factors, and elevated boron levels, all combined with the low pH (down to pH 2) of most waste rocks have limited early planned revegetation and natural plant colonisation. A renewed programme of site rehabilitation, started in 2000, focussed on establishment of near-complete ground cover and functioning ecosystems. Small patches (tens of m2) of low-pH, boron-rich, unvegetated substrates persist after more than 10 years of rehabilitation and introduction of a wide variety of species, but natural colonisation is slowly advancing on these remnants. The rehabilitation has coincided with and contributed to a rise in runoff water pH from ≈4.5 to ≈5.6. This decrease in severity of acid mine drainage (AMD) has apparently become sustainable without further intervention. Near-complete vegetative cover occurred by a combination of a major planting programme and natural colonisation from nearby islands of established native species. Both processes were accompanied by development of functioning ecosystems, and supported by increasing invertebrate diversity and abundance, which are ensuring the persistence of the ameliorative effects on AMD at the site. Vegetation established via natural processes can function ecologically at a higher level than comparable planted vegetation but may not lead to the desired plant cover on some substrates.

Zusammenfassung

Aufgrund des Kontakts von Oberflächen- und Grundwasser mit pyrithaltigen Bergen kommt es an der geschossenen Kohlenzeche Wangaloa (Süd-Neuseeland) zum Austritt von sauren Grubenwässern (pH 3–5). Der geringe Nährstoffgehalt der meisten Berge, deren physikalische Eigenschaften und erhöhten Borgehalte in Verbindung mit dem niedrigen pH-Wert (bis zu pH 2) behinderten frühere Begrünungsversuche und die natürliche Sukzession. Ein neuerliches Programm zur Rehabilitation begann im Jahr 2000 und zielte darauf ab, eine fast vollständige Vegetationsdecke zu erhalten und ein funktionierendes Ökosystem zu errichten. Selbst nach über 10 Jahren Renaturierung mit einer Vielzahl von Arten bestehen noch kleinere Bereiche von mehreren Zehnern Quadratmetern mit niedrigem pH-Wert und borreichen, unbewachsenen Substraten in denen allerdings langsam Sukzession einsetzt. Im Zuge der Rehabilitation stieg der pH-Wert des Oberflächenwassers von etwa 4.5 auf etwa 5.6 an. Offensichtlich hat sich diese nachhaltige Verbesserung des sauren Grubenwassers ohne weiteres Zutun ergeben. Eine nahezu vollständige Vegetationsdecke hat sich durch die Kombination eines großangelegten Bepflanzungsprogramms und natürliche Besiedlung von nahe gelegenen Inseln mit etablierten einheimischen Arten gebildet. Beide Prozesse gehen mit der Ausbildung eines funktionierenden Ökosystems einher und gleichzeitig hat die Vielfalt und Anzahl der Wirbellosen zugenommen. Dadurch ist gewährleistet, dass die Bemühungen zur Sanierung des Zechengeländes langlebig sein werden. Obwohl natürliche Sukzession zu einer ökologisch besser funktionierenden Vegetation führen kann als Anpflanzungen werden machen Substrate nicht zu der gewünschten Pflanzenbedeckung führen.

Resumen

Las aguas ácidas de mina (pH 3-5) en la mina de carbón Wangaloa, actualmente cerrada, han resultado del escurrimiento de agua superficial y la filtración de aguas subterráneas en contacto con pilas de residuos de roca con contenido en pirita. El bajo contenido en nutrientes, factores físicos y los elevados niveles de boro combinados con el bajo pH (debajo de pH 2) de la mayoría de las pilas de residuos de rocas, han limitado una planeada y temprana revegetación y la colonización natural de las plantas. Un renovado programa para rehabilitación del sitio, comenzada en 2000, se focalizó en el establecimiento de de una cobertura casi completa de la tierra y de ecosistemas funcionales. Pequeñas parcelas (decenas de m2) de bajo pH, ricas en boro y con sustratos sin vegetación aún persisten luego de más de 10 años de rehabilitación y la introducción de una amplia variedad de especies con colonización natural está lentamente avanzando sobre esos lugares remanentes. La rehabilitación ha coincidido y ha contribuido con el aumento del pH en el agua que se escurre desde ≈ 4.5 a ≈ 5.6. This decrease in severity of acid mine drainage (AMD) has apparently become sustainable without further intervention. Una cobertura vegetal casi completa se obtuvo por combinación del programa de plantación y la colonización natural desde islas cercanas de especies nativas establecidas. Ambos procesos fueron acompañados por el desarrollo de ecosistemas funcionales y apoyada por el incremento en la diversidad y la abundacia de invertebrados que aseguran la continuidad de los efectos paliativos sobre los AMD en el sitio. La vegetación establecida a través de procesos naturales puede funcionar ecológicamente a mayor nivel que la vegetación comparable plantada pero puede no dar la deseada cobertura vegetal sobre algunos sustratos.

抽象

由于地表径流和地下水渗流对富含黄铁矿矸石堆的淋滤作用,已闭坑的Wangaloa煤矿废水呈酸性(PH值为3-5)。营养贫乏、位置不利、硼量过高、矸石pH值偏低(pH为2)等综合因素限制了早期人为植被恢复计划和天然植被生长。2000年新一轮采后场地复垦计划重启,旨在建立植被全覆盖的功能生态系统。经过十几年复垦和大量物种引入,仅几处数十平方米的小片面积仍低PH值、高硼、无植被覆盖,但这里的天然植被恢复仍缓慢进行。复垦使地表径流的PH值从4.5升至5.6。即使在不进行进一步人为干预的情况下,矿井水酸度仍可持续降低。通过主要物种的人为种植计划和附近岛屿本土物种的天然定植方案相结合,实现了植被全覆盖。上述两种植被恢复过程同时完成了功能生态系统建立,无脊椎动物种类和数量不断增加,能够确保采场酸性废水治理的持久效果。虽然植被的天然恢复过程能够保证植被恢复系统的高水平生态运行,但该方法有时难以保证某些区域达到预期的植被覆盖程度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baasch A, Kirmer A, Tischew S (2012) Nine years of vegetation development in a postmining site: effects of spontaneous and assisted site recovery. J Appl Ecol 49:251–260

    Article  Google Scholar 

  • Begbie M, Craw D, Rufaut CG, Martin C (2007) Temporal and spatial variability of acid rock drainage in a rehabilitated coal mine, Wangaloa, Soth Otago, New Zealand. NZ J Geol Geophys 50:227–238

    Article  Google Scholar 

  • Bell LC (2001) Establishment of native ecosystems after mining—Australian experience across diverse biogeographic zones. Ecol Eng 17:179–186

    Article  Google Scholar 

  • Black A, Craw D (2001) Arsenic, copper and zinc at wangaloa coal mine, southeast Otago, New Zealand. Int J Coal Geol 45:181–193

    Article  Google Scholar 

  • Borden RK, Black R (2005) Volunteer revegetation of waste rock surfaces at the Bingham Canyon Mine, Utah. J Environ Qual 34:2234–2242

    Article  Google Scholar 

  • Boyer S, Wratten S, Pizey M, Weber P (2011) Impact of stockpiling and mining rehabilitation on earthworm communities. Pedobiologia 54S:S99–S102

    Article  Google Scholar 

  • Bradshaw A (2000) The use of natural processes in reclamation—advantages and difficulties. Lands Urban Plan 51:89–100

    Article  Google Scholar 

  • Bradshaw A, Hüttl RF (2001) Future minesite restoration involves a broader approach. Ecol Eng 17:87–90

    Article  Google Scholar 

  • Brändle M, Durka W, Altmoos M (2000) Diversity of surface-dwelling beetle assemblages in opencast lignite mines in Central Germany. Biodivers Conserv 9:1297–1311

    Article  Google Scholar 

  • Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environ Rev 10:41–71

    Article  Google Scholar 

  • Craw D, Rufaut CG, Haffert L, Todd A (2006) Mobilisation and attenuation of boron during coal mine rehabilitation, Wangaloa, New Zealand. Sci Total Environ 368:444–455

    Article  Google Scholar 

  • Craw D, Rufaut CG, Hammit S, Clearwater SG, Smith C (2007) Geological controls on natural ecosystem recovery on mine waste in southern New Zealand. Environ Geol 51:1389–1400

    Article  Google Scholar 

  • Cristescu RH, Frère C, Banks PB (2012) A review of fauna in mine rehabilitation in Australia: current state and future directions. Biol Conserv 149:60–72

    Article  Google Scholar 

  • dos Santos R, Citadini-Zanelte V, Leal-Filho L, Hennies WT (2008) Spontaneous vegetation on overburden piles in the coal basin of Santa Catarina, Brazil. Restor Ecol 16:444–452

    Article  Google Scholar 

  • Esler AE, Astridge SJ (1974) Tea tree (Leptospermum) communities of the Waitakere Range, Auckland, New Zealand. NZ J Bot 12:485–501

    Article  Google Scholar 

  • Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121

    Article  Google Scholar 

  • Frouz J, Kalčík J, Velichová V (2011) Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site. Ecol Eng 37:1910–1913

    Article  Google Scholar 

  • Harrington HJ (1958) Geology of the Kaitangata Coalfield, New Zealand. NZ Geol Surv Bull 59

  • Harris RJ, Toft RJ, Dugdale JS, Williams PA, Rees JS (2004) Insect assemblages in a native (kanuka—Kunzea ericoides) and invasive (gorse—Ulex europaeus) shrubland. NZ J Ecol 28:35–47

    Google Scholar 

  • Hendrychová M, Šálek M, Tajovský K, Řehoř M (2012) Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restor Ecol 20:561–567

    Article  Google Scholar 

  • Hodačová D, Prach K (2003) Spoil heaps from brown coal mining: technical reclamation versus spontaneous revegetation. Restor Ecol 11:385–391

    Article  Google Scholar 

  • Holmes P (2001) Shrubland restoration following woody alien invasion and mining: effects of topsoil depth, seed source, and fertilizer addition. Restor Ecol 9:71–84

    Article  Google Scholar 

  • Keesing V, Wratten S (1998) Indigenous invertebrate components in ecological restoration in agricultural landscapes. NZ J Ecol 22:99–104

    Google Scholar 

  • Leckie H, Weber P, Thomas D, Kingsbury M, Pizey M (2008) Beneficial use of coal fly ash to manage acid soils at Wangaloa Opencast Mine, New Zealand. AusIMM NZ Branch conference 2008, pp 265–276

  • Lottermoser BG, Glass JJ, Page CN (2011) Sustainable natural remediation of abandoned tailings by metal-excluding heather (Calluna vulgaris) and gorse (Ulex europaeus), Carnon Valley, Cornwall, UK. Ecol Eng 37:1249–1253

    Article  Google Scholar 

  • Mudrák O, Frouz J, Velichová V (2010) Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol Eng 36:783–790

    Article  Google Scholar 

  • Novák J, Konvicka M (2006) Proximity of valuable habitats affects succession patterns in abandoned quarries. Ecol Eng 26:113–122

    Article  Google Scholar 

  • Prach K, Hobbs R (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16:363–366

    Article  Google Scholar 

  • Rufaut CG, Craw D (2010) Geoecology of ecosystem recovery at an inactive coal mine site, New Zealand. Environ Earth Sci 60:1425–1437

    Article  Google Scholar 

  • Rufaut CG, Hammit S, Craw D, Clearwater SG (2006) Plant and invertebrate assemblages on waste rock at Wangaloa coal mine, Otago, New Zealand. NZ J Ecol 30:311–319

    Google Scholar 

  • Rufaut CG, Clearwater SG, Craw D (2010) Recolonisation and recovery of soil invertebrate assemblages at an inactive coal mine in southern New Zealand. NZ Nat Sci 35:17–30

    Google Scholar 

  • Topp W, Simon M, Kante G, Dworschal U, Nicolini F, Prückner S (2001) Soil fauna of a reclaimed lignite opencast mine of the Rhineland: improvement to soil quality by surface pattern. Ecol Eng 17:307–322

    Article  Google Scholar 

  • Tropek R, Kadlec T, Karesova P, Spitzer L, Kocarek P, Malenovsky I, Banar P, Tuf IH, Hejda M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47:139–147

    Article  Google Scholar 

  • Tropek R, Kadlec T, Heida M, Kocarek P, Skuhrovec J, Malenovsky I, Vodka S, Spitzer L, Banar P, Konvicka M (2012) Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol Eng 43:13–18

    Article  Google Scholar 

  • Tropek R, Hejda M, Kadlec T, Spitzer L (2013) Local and landscape factors affecting communities of plants and diurnal Lepidoptera in black coal spoil heaps: implications for restoration management. Ecol Eng 57:252–260

    Article  Google Scholar 

  • Valente T, Gomes P, Pamplona J, de la Torre ML (2012) Natural stabilisation of mine waste dumps—evolution of the vegetation cover in distinctive geochemical and mineralogical environments. J Geochem Explor 123:152–161

    Article  Google Scholar 

  • Voeller PJ, Zamora BA, Harsh J (1998) Growth response of native shrubs to acid mine spoil and to proposed soil amendments. Plant Soil 198:209–217

    Article  Google Scholar 

  • Vymazal J, Sklenicka P (2012) Restoration of areas affected by mining. Ecol Eng 43:1–4

    Article  Google Scholar 

  • Watts CH, Didham RK (2006) Influence of habitat isolation on invertebrate colonisation of Sporodanthus ferrugineus in a mined peat bog. Rest Ecol 14:412–419

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Otago, with additional support from Solid Energy New Zealand Ltd. Arne Cleland provided abundant practical comments and advice. AgResearch kindly provided use of their laboratory at Invermay campus for invertebrate heat extractions. We thank John Nunn and Barbara Barratt at Invermay AgResearch for their taxonomic input into Coleoptera, and to Penelope Greenslade at the University of Ballarat (Victoria) for Collembola taxonomy. Additional site information was provided by Megan Bedford, Michelle Begbie, and Genelle Slack. Reviews by two anonymous referees improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Craw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rufaut, C.G., Craw, D. & Foley, A. Mitigation of Acid Mine Drainage via a Revegetation Programme in a Closed Coal Mine in Southern New Zealand. Mine Water Environ 34, 464–477 (2015). https://doi.org/10.1007/s10230-014-0295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0295-3

Keywords

Navigation