Skip to main content

Advertisement

Log in

The Potential Use of Exhausted Open Pit Mine Voids as Sinks for Atmospheric CO2: Insights from Natural Reedbeds and Mine Water Treatment Wetlands

Mögliche Verwendung von Tagebaurestlöchern zur Speicherung von atmosphärischem CO2: Erkenntnisse aus natürlichen Schilfbeständen und aus Feuchtgebieten zur Aufbereitung von Bergbauwässern

El potencial uso de hoyos de minas agotadas como reservorios para CO2 atmosférico: revelaciones desde cañaverales naturales y de humedales para el tratamiento de aguas

  • IMWA Insights
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Abandoned surface mine voids are often left to flood, forming pit lakes. Drawing simple but important lessons from experiences with compost-based passive remediation systems for acidic mine waters, an alternative end-use for open pit mine voids is proposed: gradual infilling with organic material, which can serve as a long-term sink for atmospheric CO2, whilst ameliorating or eventually eliminating sustained evaporative water loss and acidic water pollution. Key to the success of this approach is the suppression of methane release from organic sediments flooded with sulfate-rich mine waters: the presence of modest amounts of sulfate (which is typically abundant in mine waters) inhibits the activity of methanogenic bacteria. This explains why gas release studies of mine water treatment wetlands never report methane emissions; CO2 is the only greenhouse gas emitted, and this is clearly not at levels sufficient to undo the benefits of wetlands as net CO2 sinks. While the compete infilling of open pits with organic sediments might take a very long time, only minimal maintenance would be needed, and if carbon trading markets finally mature, a steady income stream could be obtained to cover the costs, thus extending the economic life of the mine site far beyond cessation of mining.

Zusammenfassung

Tagebaurestlöcher werden oft geflutet, so daß Tagebauseen entstehen. Auf Grund einfacher, jedoch wichtiger Erfahrungen mit kompostbeschickten passiven Remediationssystemen zur Behandlung saurer Bergbauwässer wird eine alternative Endnutzung der Restvolumina vorgeschlagen, nämlich graduelle Füllung mit organischer Substanz, welche atmosphärisches CO2 langzeitig bindet. Gleichzeitig würde die Verdunstung aus dem See und das Austreten von belastetem Wasser verringert und schließlich ausgeschaltet. Der Schlüssel zum Erfolg dieser Methode liegt in der Unterdrückung einer Methanfreisetzung aus organischen Sedimenten in Kontakt mit sulfatreichen Bergbauwässern, weil die Präsenz geringer Mengen von Sulfat (das gewöhnlich in Bergbauwässern reichlich vorhanden ist)die Aktivität methanogener Bakterien verhindert. Das erklärt, warum in Studien der Gasemission von Feuchtgebieten, welche der Remediation von sauren Bergbauwässern dienen, niemals Methan festgestellt wurde. Das einzige emittierte Treibhausgas ist CO2, jedoch nur in Mengen, welche den Nutzen der Feuchtgebiete als CO2-Senken nicht in Frage stellen. Obwohl die Füllung von Restlöchern mit organischer Substanz sehr lange brauchen würde, wären nur minimale Wartungsarbeiten erforderlich. Sobald der Preis für Kohlenstoffemissionen am Markt anzieht, könnte ein stetiges Einkommen erzeilt werden, das die Kosten abdeckt. Dadurch wäre das wirtschaftliche Leben des Bergbaues weit über die Schließung des Abbaues hinaus verlängert.

Resumen

Los hoyos de minas superficiales abandonadas frecuentemente se inundan formando lagos. Basados en simples pero importantes lecciones recogidas en las experiencias con sistemas de remediación basados en compost para el tratamiento de aguas ácidas de minas, se propone una alternativa para el uso final de los hoyos de minas: relleno gradual con material orgánico que puede servir como un reservorio a largo plazo para CO2 atmosférico, mientras mejora o eventualmente elimina las pérdidas de agua por evaporación sostenida y la polución de agua ácida. La clave para el éxito de esta aproximación es la eliminación del metano liberado desde los sedimentos orgánicos inundados con agua de minas ricas en sulfato: la presencia de pequeñas cantidades de sulfato (que es típicamente abundante en aguas de minas) inhibe la actividad de bacterias metanogénicas. Esto explica porque los estudios de liberación de gases de humedales usados para el tratamiento de aguas de minas nunca reportan emisiones de metano; CO2 es el único gas invernadero emitido y no a niveles suficientes para eliminar los beneficios de humedales como reservorios netos de CO2. Mientras que el relleno complete de hoyos de minas con sedimentos orgánicos podría tomar un largo tiempo, solo un mínimo mantenimiento sería necesario y si el mercado del carbón finalmente madura, se podría obtener cierto beneficio para cubrir los costos extendiendo así la vida económica de la mina mucho después de cesada la actividad minera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Banks D, Younger PL, Arnesen R-T, Iversen ER, Banks SD (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174

    Article  Google Scholar 

  • Borren W, Bleuten W, Lapshina ED (2004) Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quat Res 61:42–51

    Article  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or sink of greenhouse gases? Aquat Bot 69:313–324

    Article  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabil MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microb 33:1162–1169

    Google Scholar 

  • Castendyk DN, Eary LE (2009) Mine pit lakes: characteristics, predictive modeling, and sustainability. Management Technologies for metal mining influenced water, vol 3, Soc for Mining, Metallurgy and Exploration, Littleton, CO

  • Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39:1254–1260

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    Google Scholar 

  • Darke AK, Megonigal JP (2003) Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands. Estuar Coast Shelf Sci 57:255–268

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84

    Article  Google Scholar 

  • European Commission (2013) The EU Emissions Trading System (EU ETS). European Commission, Brussels. http://ec.europa.eu/clima/publications/docs/factsheet_ets_en.pdf. Accessed 5 Dec 2013

  • Geller W, Schultze M (2013) Remediation and management of acidified pit lakes and out flowing waters. In: Geller W, Schultze M, Kleinmann RL, Wolkersdorfer CE (eds) Acidic pit lakes. The Legacy of Coal and Metal Surface Mines, pp 225–264

  • Heinsch FA, Heilman JL, McInnes KJ, Cobos DR, Zuberer DA, Roelke DL (2004) Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability. Agric For Meteorol 125:159–172

    Article  Google Scholar 

  • Jauhiainen S, Pitkänen A, Vasander H (2004) Chemostratigraphy and vegetation in two boreal mires during the Holocene. Holocene 14:768–779

    Article  Google Scholar 

  • Liikanen A, Huttunen JT, Karjalainen SM, Heikinen K, Vaisanen TS, Nykanen H, Martikainen PJ (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecol Eng 26:241–251

    Article  Google Scholar 

  • Mayes WM, Large ARG, Younger PL (2005) The impact of pumped water from a de-watered magnesian limestone quarry on an adjacent wetland, Co., Thrislington, Durham, UK. Environ Pollut 138:444–455

    Article  Google Scholar 

  • McCullough CD, Lund MA, May JM (2008) Field-scale demonstration of the potential for sewage to remediate acidic mine waters. Mine Water Environ 27:31–39

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AH, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon and climate change. Landsc Ecol 28:583–597

    Article  Google Scholar 

  • Raskin L, Rittmann BE, Stahl DA (1996) Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl Environ Microbiol 62:3847–3857

    Google Scholar 

  • Rooth JE, Stevenson JC (2000) Sediment deposition patterns in Phragmites australis communities: implications for coastal areas threatened by rising sea-level. Wetl Ecol Manag 8:173–183

    Article  Google Scholar 

  • Rooth JE, Stevenson JC, Cornwell JC (2003) Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26:475–483

    Article  Google Scholar 

  • Smith SJ, Wigley TML (2000) Global warming potentials, 2: accuracy. Clim Change 44:459–469

    Article  Google Scholar 

  • Song CC, Yan BX, Wang YS, Wang YY, Lou YJ, Zhao ZC (2003) Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chin Sci Bull 48:2749–2753

    Article  Google Scholar 

  • Sperling EV, Grandchamp CAP (2008) Water quality of a deep pit lake: case study of Aguas Claras, Brazil. In: Rapantova N, Hrkal Z (eds) Mine water and the environment, Proceedings of 10th International Mine Water Assoc Congress, Karlovy Vary, Czech Republic, pp 615–618

  • Stadmark J, Leonhardson L (2005) Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecol Eng 25:542–551

    Article  Google Scholar 

  • Teiter S, Mander U (2005) Emission of N2O, N2, CH4 and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecol Eng 25:528–541

    Article  Google Scholar 

  • US Fish and Wildlife Service (2008) Region six environmental contaminants—Pit Lakes. www.fws.gov/mountain-prairie/contaminants/contaminants8.htmL. Accessed 5 Dec 2013

  • USDA (2001) Constructed wetlands. Report NEH-637-03, US Dept of Agriculture, Natural Resources Conservation Service, Washington DC

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer Academic Publication, Dordrecht. ISBN 1-4020-0137-1

  • Zedler JB (2000) Progress in wetland restoration ecology. Trends Ecol Evol 15:402–407

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to our former colleagues in the HERO Group at Newcastle University—and especially Dr. Adam Jarvis, Dr. Catherine Gandy, and Dr. Natalie Kruse—for stimulating discussions on the ideas presented here. We are also grateful to Dr. Neil Gray (Civil Engineering and Geosciences, Newcastle University) for drawing our attention to the sulfate inhibition of microbial methanogenesis and to Professor Sir Christopher Edwards (former Vice-Chancellor of Newcastle University) for encouraging the train of thought and supporting the first filing of it as a patent application (PCT/GB2007/050444) in the EU and South America. The patent was not pursued, as we wish this approach to be freely available to all; the first filing would certainly constitute ‘prior art’ and thus inhibit others from later patenting the idea against our wishes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Younger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younger, P.L., Mayes, W.M. The Potential Use of Exhausted Open Pit Mine Voids as Sinks for Atmospheric CO2: Insights from Natural Reedbeds and Mine Water Treatment Wetlands. Mine Water Environ 34, 112–120 (2015). https://doi.org/10.1007/s10230-014-0293-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0293-5

Keywords

Navigation