Advertisement

Mine Water and the Environment

, Volume 34, Issue 4, pp 442–454 | Cite as

The Use of Mussel Shells in Upward-Flow Sulfate-Reducing Bioreactors Treating Acid Mine Drainage

  • Benjamin UsterEmail author
  • Aisling D. O’Sullivan
  • Su Young Ko
  • Alex Evans
  • James Pope
  • Dave Trumm
  • Brian Caruso
Technical Article

Abstract

In this study, sulfate-reducing bioreactors (SRBRs) efficiently treated acid mine drainage (AMD) for a contiguous period of 5 months. The AMD was sourced from an active coal mine on the South Island of New Zealand and typically had a pH < 3, 1,700 mg/L of sulfate, 50 mg/L of Fe, 18 mg/L of Al, 15 mg/L of Mn, 4 mg/L of Zn, and lower concentrations of other contaminants. Two alkalinity-generating materials (mussel shells and limestone) and two hydraulic retention times (HRTs) of 3 and 10 days were evaluated. Influent and effluent water quality parameters were monitored weekly. Each SRBR system successfully increased the pH (≥6) and the alkalinity (≤350 mg/L CaCO3) of the water while removing substantial amounts of dissolved metals at both HRTs (≥90 % Al, ≥86 % Fe, ≥87 % Cu, ≥99 % Zn). Mn removal was lower and ranged from 19 to 55 %. Increasing the HRT from 3 to 10 days significantly improved effluent water quality in terms of pH, alkalinity, and metals and sulfate removal. SRBRs using mussel shells in their reactive mixtures were more effective than those using limestone, with a higher (60–113 %) alkalinity generation and a better (3–5 %) metal removal. This study showed that mussel shells are an inexpensive and sustainable alternative to mined limestone for AMD passive treatment, and that better treatment efficiency resulted from a longer HRT.

Keywords

Mine water Passive treatment Organic substrate Alkalinity generation Metal removal rates 

Nutzung von Muschelschalen in aufwärts durchflossenen sulfatreduzierenden Bioreaktoren zur Behandlung saurer Grubenwässer

Zusammenfassung

In der Studie behandelten sulfatreduzierende Bioreaktoren (SRBRs) effizient saure Grubenwässer (AMD) für 5 Monate. Das Grubenwasser stammte von einem aktiven Kohlebergwerk auf der Südinsel von Neuseeland. Es hatte in der Regel einen pH < 3 und enthielt 1700 mg/L Sulfat, 50 mg/L Fe, 18 mg/L Al, 15 mg/L Mn, 4 mg/L Zn sowie kleinere Konzentrationen weiterer Kontaminanten. Zwei Alkalinität liefernde Materialien (Muschelschalen und Kalkstein) und zwei hydraulische Aufenthaltszeiten (HRTs) von 3 und 10 Tagen wurden getestet. Wasserqualitätsparameter wurden im Zu- und Ablauf wöchentlich bestimmt. Jedes SRBR-System erhöhte erfolgreich den pH (≥6) und die Alkalinität (≤350 mg/L CaCO3) des Wassers. Bei beiden HRTs wurden Metalle weitgehend aus dem Wasser entfernt (≥90% Al, ≥86% Fe, ≥87% Cu, ≥99% Zn). Die Manganentfernung war geringer (19 to 55 %). Die Erhöhung der HRT von 3 auf 10 Tage erhöhte signifikant die Ablaufwasserqualität hinsichtlich pH, Alkalinität sowie Metall- und Sulfatentfernung. SRBRs mit Muschelschalen waren mit höherer Alkalinitätsproduktion (60-113 %) und besserer Metallentfernung (3-5 %) effektiver als SRBRs mit Kalkstein. Die Studie zeigte, dass Muschelschalen für die passive Behandlung saurer Grubenwässer preiswerte und nachhaltige Alternativen zu bergbaulich gewonnenem Kalkstein sind und dass längere HRT eine bessere Behandlungseffizienz bewirkte.

El uso de conchas de mejillones en biorreactores reductores de sulfato de flujo ascendente para el tratamiento de drenjaes ácidos de mina

Resumen

En este estudio, biorreactores reducidores de sulfato (SRBRs) permitieron el tratamiento eficiente de drenajes ácidos de minas (AMD) durante un período continuo de 5 meses. El AMD provenía de una mina activa de carbón en South Island de New Zealand y presentaba un pH < 3, 1700 mg/L de sulfato, 50 mg/L de Fe, 18 mg/L de Al, 15 mg/L de Mn, 4 mg/L de Zn y concentraciones menores de otros contaminantes. Se evaluaron dos materiales generadores de alcalinidad (conchas de mejillones y caliza) y dos tiempos de retención hidráulica (HRTs) de 3 y 10 días. Los parámetros de calidad del agua en el influente y en el efluente fueron controlados semanalmente. Cada SRBR incrementó exitosamente el pH (≥6) y la alcalinidad (≤350 mg/L CaCO3) del agua además de remover significativas cantidades de los metales disueltos a ambos HRTs (≥90% Al, ≥86% Fe, ≥87% Cu, ≥99% Zn). La remoción de Mn fue menor (entre 19 y 55%.) El incremento de HRT desde 3 a 10 días mejoró significativamente la calidad del agua del efluente en términos de pH, alcalinidad y la remoción de metales y sulfatos. Los SRBR que usaban conchas de mejillones en sus mezclas reactivos fueron más eficientes que aquellos que utilizaban caliza, con una mayor (60 a 113%) generación de alcalinidad y una mayor remoción de metales (3 a 5%). Este estudio mostró que las conchas de mejillones son una alternativa barata y sustentable para aportar caliza para el tratamiento pasivo de AMD y que una mayor eficiencia en el tratamiento resultó en un HRT más largo.

贝壳用于上行式硫酸盐还原生物反应器处理酸性矿山废水

摘要

本研究利用硫酸盐还原生物反应器持续处理酸性矿山废水(AMD)5个月。酸性矿山废水取自新西兰南岛的某生产煤矿,水化学特征为:pH<3,硫酸盐、铁、铝、锰和锌的浓度分别为1700mg/L、50mg/L、18mg/L、15mg/L和4mg/L,以及浓度相对较低的其它污染物。用两种产碱材料(贝壳和石灰)进行了水力持续试验时间为3天和10天的试验。每周监测SRBR系统入流液和出流液水质参数。每个SRBR系统成功地提高了系统入流液pH值(大于6)和碱度(≤350 mg/L CaCO3),可溶解铝、铁、铜和锌去除率分别达≥90%、 ≥86% 、≥87% 和≥99%。锰的去除率较低,在19~55%之间。延长的水动力持续时间从3天至10天显著提高了处理后出流液的pH值、碱度和金属与硫酸盐去除率。对于SRBR系统,贝壳要比石灰提高碱生成率60-113%,提高金属去除率3-5%。研究证明,贝壳是一种处理酸性废水(AMD)材料石灰的经济、有效替代物,较长的水动力持续时间可显著提高其处理效率。

Notes

Acknowledgments

This research was funded by CRL Energy Ltd, the Dept of Civil and Natural Resources Engineering at the University of Canterbury (New Zealand), and the University of Lausanne (Switzerland). Technical and logistical support was provided by various university technicians including Peter McGuigan, David McPherson, Robert Stainthorpe, and Matt Cockcroft. Francis Mining Company Ltd kindly granted access to the Echo Mine site for AMD collection. Aaron Dutton from CRL Energy Ltd helped during AMD collection. Solid Energy New Zealand donated the mussel shells.

References

  1. Abdulkarim A, Tijani IM, Abdulsalam S, Abubakar Jaju M, Alewo OA (2013) Extraction and characterisation of chitin and chitosan from mussel shell. Civ Environ Res 3(2):108–114Google Scholar
  2. Amos PW, Younger PL (2003) Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Res 37(1):108–120CrossRefGoogle Scholar
  3. ANZECC (2000) Australian and New Zealand Environment and Conservation Council (ANZECC) Water quality guidelinesGoogle Scholar
  4. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), 21st Edit, APHA, Washington, DCGoogle Scholar
  5. Bamforth SM, Manning DAC, Singleton I, Younger PL, Johnson KL (2006) Manganese removal from mine waters—investigating the occurrence and importance of manganese carbonates. Appl Geochem 21(8):1274–1287CrossRefGoogle Scholar
  6. Batty LC, Younger PL (2004) The use of waste materials in the passive remediation of mine water pollution. Surv Geophys 25(1):55–67CrossRefGoogle Scholar
  7. Benner SG, Blowes DW, Ptacek CJ, Mayer KU (2002) Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl Geochem 17(3):301–320CrossRefGoogle Scholar
  8. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Lollar BS (ed) Environmental geochemistry: treatise on geochemistry, vol 9. Elsevier, Amsterdam, pp 149–204CrossRefGoogle Scholar
  9. Byrne P, Wood PJ, Reid I (2012) The impairment of river systems by metal mine contamination: a review including remediation options. Crit Rev Environ Sci Technol 42(19):2017–2077CrossRefGoogle Scholar
  10. Carroll JJ, Mather AE (1989) The solubility of hydrogen sulphide in water from 0 to 90°C and pressures to 1 MPa. Geochim Cosmochim Acta 53:1163–1170CrossRefGoogle Scholar
  11. Creed JT, Brockhoff CA, Martin TD (1994) Determination of trace elements in waters and wastes by inductively coupled plasma mass spectrometry, revision 5.4, EMMC version. US Environmental Protection Agency, WashingtonGoogle Scholar
  12. Crombie FM, Weber PA, Lindsay P, Thomas DG, Rutter GA, Shi P, Rossiter P, Pizey MH (2011) Passive treatment of acid mine drainage using waste mussel shell, Stockton coal mine, New Zealand. In: Bell LC, Braddock B (eds) 7th Australian acid and metalliferous drainage workshop, Darwin, AustraliaGoogle Scholar
  13. Cubillas P, Köhler S, Prieto M, Causserand C, Oelkers EH (2005a) How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution–CdCO3 precipitation. Geochim Cosmochim Acta 69(23):5459–5476CrossRefGoogle Scholar
  14. Cubillas P, Köhler S, Prieto M, Chaïrat C, Oelkers EH (2005b) Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem Geol 216(1–2):59–77CrossRefGoogle Scholar
  15. Das BM (2002) Principles of geotechnical engineering, 5th edn. Brooks Cole/Thompson Learning, Pacific Grove, CAGoogle Scholar
  16. Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal-contaminated water using bacterial sulfate-reduction: results from pilot-scale reactors. Biotechnol Bioeng 40(5):609–616CrossRefGoogle Scholar
  17. Ettner DC (1999) Pilot scale constructed wetland for the removal of nickel from tailings drainage, southern Norway. In: Proceedings, congress of the international mine water association, pp 207–211Google Scholar
  18. Garcia C, Moreno DA, Ballester A, Blázquez ML, González F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14(9):997–1008CrossRefGoogle Scholar
  19. Gibert O, de Pablo J, Cortina JL, Ayora C (2004) Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res 38(19):4186–4196CrossRefGoogle Scholar
  20. Gitari WM, Petrik LF, Etchebers O, Key DL, Iwuoha E, Okujeni C (2008) Passive neutralisation of acid mine drainage by fly ash and its derivatives: a column leaching study. Fuel 87(8–9):1637–1650CrossRefGoogle Scholar
  21. Gusek JJ (2002) Sulphate-reducing bioreactor design and operating issues: is this the passive treatment technology for your mine drainage? In: Proceedings, National meeting of the American society of mining and reclamation (ASMR), Park City, UT, USAGoogle Scholar
  22. Gusek JJ (2005) Design challenges for large scale sulfate-reducing bioreactors. In: Calabrese EJ, Kostecki PT, Dragun J (eds) Contaminated soils, sediments and water, vol 9. Springer, NYC, NY, USA, pp 33–44. doi: 10.1007/0-387-23079-3_4
  23. Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26(2):155–187CrossRefGoogle Scholar
  24. Heal KV, Salt CA (1999) Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil. Water Sci Technol 39(12):141–148CrossRefGoogle Scholar
  25. Hedin RS, Nairn RW, Kleinmann RLP (1994) Passive treatment of coal mine drainage. US Bureau of Mines IC 9389, US Dept of Interior, Pittsburgh, PA, USAGoogle Scholar
  26. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14CrossRefGoogle Scholar
  27. Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37(14):3379–3389CrossRefGoogle Scholar
  28. Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Boca Raton, Florida, p 893Google Scholar
  29. Kirkpatrick LA (2012) A simple guide to IBM SPSS: for version 20.0. Cengage Learning, StamfordGoogle Scholar
  30. Kohler SJ, Cubillas P, Rodriguez-Blanco JD, Bauer C, Prieto M (2007) Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environ Sci Technol 41(1):112–118CrossRefGoogle Scholar
  31. Lens PNL, Visser A, Janssen AJH, Pol L, Hulshoff W, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28(1):41–88CrossRefGoogle Scholar
  32. Machemer SD, Wildeman TR (1992) Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland. J Contam Hydrol 9(1–2):115–131CrossRefGoogle Scholar
  33. Mayes WM, Batty LC, Younger PL, Jarvis AP, Koiv M, Vohla C, Mander U (2009) Wetland treatment at extremes of pH: a review. Sci Total Environ 407(13):3944–3957CrossRefGoogle Scholar
  34. McCauley CA (2011) Assessment of passive treatment and biochemical reactors for ameliorating acid mine drainage at Stockton coal mine. PhD thesis, University of Canterbury, Christchurch, New ZealandGoogle Scholar
  35. McCauley CA, O’Sullivan AD, Milke MW, Weber PA, Trumm DA (2009) Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Res 43(4):961–970CrossRefGoogle Scholar
  36. Nairn RW, Mercer MN (2000) Alkalinity generation and metals retention in a successive alkalinity producing system. Mine Water Environ 19:124–133CrossRefGoogle Scholar
  37. Neculita CM, Zagury GJ, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J Environ Qual 36(1):1–16CrossRefGoogle Scholar
  38. Neculita CM, Zagury GJ, Bussière B (2008) Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Appl Geochem 23(12):3442–3451CrossRefGoogle Scholar
  39. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waste. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues. Reviews in economic geology, vol 6, pp 133–160Google Scholar
  40. Okabe S, Nielsen PH, Characklis WG (1992) Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol Bioeng 40(6):725–734CrossRefGoogle Scholar
  41. PIRAMID Consortium (2003) Engineering guidelines for the passive remediation of acidic and/or metalliferous mine drainage and similar wastewaters. University of Newcastle Upon Tyne, UKGoogle Scholar
  42. Pope J, Newman N, Craw D, Trumm D, Rait R (2010) Factors that influence coal mine drainage chemistry West Coast, South Island, New Zealand. N Z J Geol Geophys 53(2):115–128CrossRefGoogle Scholar
  43. Postgate JR (1979) The sulphate-reducing bacteria, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  44. Robinson-Lora MA, Brennan RA (2009) Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions. Bioresour Technol 100(21):5063–5071CrossRefGoogle Scholar
  45. Robinson-Lora MA, Brennan RA (2010) Chitin complex for the remediation of mine impacted water: geochemistry of metal removal and comparison with other common substrates. Appl Geochem 25(3):336–344CrossRefGoogle Scholar
  46. Rose AW (2010) Advances in passive treatment of coal mine drainage (1998–2009). Presented at the 27th national meeting, ASMR, Pittsburgh, PA, USAGoogle Scholar
  47. Rose AW, Morrow T, Dunn M, Denholm C (2007) Mode of gypsum precipitation in vertical flow ponds. In: Barnhisel RI (ed), National meeting of the ASMR, Gillette, WY, USAGoogle Scholar
  48. Salomons W (1994) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52:5–23CrossRefGoogle Scholar
  49. Simmons J, Ziemkiewicz P, Black DC (2001) Use of steel slag leach beds for the treatment of acid mine drainage: the McCarty highwall project. Presented at the national association of abandoned mine lands annual conference, Athens, OH, USAGoogle Scholar
  50. Skousen JG, Sexstone A, Ziemkiewiecz PF (2000) Acid mine drainage controle and treatment. In: Barnhisel RI, Darmody RG, Daniels WL (eds) Reclamation of drastically disturbed lands, American society of agronomy-crop science society of America-soil science society of America, Madison, WI, USAGoogle Scholar
  51. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley-Interscience, NYCGoogle Scholar
  52. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94CrossRefGoogle Scholar
  53. Thomas RC, Romanek CS (2002a) Passive treatment of low-pH, ferric iron-dominated acid rock drainage in a vertical flow wetland I: acidity neutralization and alkalinity generation. Presented at the national meeting ASMR, Lexington, KY, USAGoogle Scholar
  54. Thomas RC, Romanek CS (2002b) Passive treatment of low-pH, ferric iron-dominated acid rock drainage in a vertical flow wetland II: metal removal. Presented at the national meeting ASMR, Lexington, KY, USAGoogle Scholar
  55. Trumm D, Ball J (2014) Use of sulfate-reducing mussel shell reactors in New Zealand for treatment of acid mine drainage. Presented at the West Virginia mine drainage task force symposium, Morgantown, WV, USAGoogle Scholar
  56. URS (2003) Passive and semi-active treatment of acid rock drainage from metal mines-state of the practice. Prepared for US Army Corps of Engineers, Concord, MA, USAGoogle Scholar
  57. Watzlaf GR, Schroeder KL, Kleinmann RLP, Kairies CL, Nairn RW (2004) The passive treatment of coal mine drainage National Energy Technology Laboratory, US Dept of Energy, Pittsburgh, PA, USAGoogle Scholar
  58. Wicke D, Cochrane TA, O’Sullivan AD (2012) Build-up dynamics of heavy metals deposited on impermeable urban surfaces. J Environ Manage 113:347–354CrossRefGoogle Scholar
  59. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, NYC, pp 469–586Google Scholar
  60. Wieder RK (1989) A survey of constructed wetlands for acid coal mine drainage treatment in the eastern United States. Wetlands 9(2):299–315CrossRefGoogle Scholar
  61. Wildeman T, Schmiermund R (2004) Mining influenced waters: their chemistry and methods of treatment. Presented at the ASMR national meeting and the 25th West Virginia surface mine drainage task force, Morgantown, WV, USAGoogle Scholar
  62. Wildeman TR, Gusek JJ, Higgins J (2006) Passive treatment of mine influenced waters. In: Course material for the ARD treatment short course, 7th international conference on acid rock drainage (ICARD), St. Louis MO, USAGoogle Scholar
  63. Younger PL (2004) The mine water pollution threat to water resources and its remediation in practice. IDS Water EuropeGoogle Scholar
  64. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation environmental pollution. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  65. Zagury GJ, Neculita CM, Bussière B (2005) Passive biological treatment of acid mine drainage: challenges of the 21st century. Presented at the 2nd symposium on mining and the environment, Rouyn-Noranda, QC, CanadaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benjamin Uster
    • 1
    Email author
  • Aisling D. O’Sullivan
    • 1
  • Su Young Ko
    • 1
  • Alex Evans
    • 1
  • James Pope
    • 2
  • Dave Trumm
    • 2
  • Brian Caruso
    • 1
  1. 1.Department of Civil and Natural Resources EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.CRL Energy LtdChristchurchNew Zealand

Personalised recommendations