Advertisement

Mine Water and the Environment

, Volume 34, Issue 2, pp 223–230 | Cite as

A Deep, Non-potable Water Supply for the Ochoa Sulphate of Potash (SOP) Mine Project, New Mexico, USA

  • Peter CastigliaEmail author
  • William Linderfelt
  • Cheng Cheng
  • Annelia Tinklenberg
  • David Jordan
  • Tim Dale
  • Randy Foote
  • Terre Lane
Technical Article
  • 162 Downloads

Abstract

Competing with communities, agriculture, and industry for potable-water resources can pose great challenges for mining companies seeking public and regulatory support for proposed projects. In semi-arid and arid regions of the world where freshwater resources are limited, using potable resources to supply water to mining operations often faces opposition from existing water users or is subject to lengthy regulatory reviews. Here we describe how Intercontinental Potash Corp. (USA) developed a deep, non-potable water supply from the Capitan aquifer for its Ochoa SOP Mine Project (Ochoa Project) in southeastern New Mexico (USA) that safeguards the limited freshwater resources. Through a program of exploratory well drilling, aquifer testing, and groundwater flow modeling, we find that the Capitan aquifer can sustain the proposed pumping rate of 252 L/s for a 50 year period, and that drawdown is predicted to be up to 200 m in the area of the proposed well field. We also find that depletions from the Pecos River, a connected stream subject to interstate compact agreements for water deliveries, are predicted to be at a rate of up to 1.10 L/s. We attribute the minimal impacts of the proposed pumping on the Pecos River largely to a zone of low hydraulic conductivity (1.5 × 10−3 m/day) near the county line that separates the aquifer where pumping is proposed in Lea County, New Mexico, from the area where the aquifer is connected to the Pecos River in Eddy County, New Mexico.

Keywords

Capitan aquifer Desalination Fertilizer Saline water 

Eine tiefe Brauchwasserversorgung für das Ochoa Minenprojekt zur Gewinnung von schwefelsaurem Kali (SOP), New Mexico, USA

Zusammenfassung

Im Wettbewerb mit Gemeinden, Landwirtschaft und Industrie um Trinkwasser-Ressourcen können große Herausforderungen für Bergbauunternehmen entstehen, um öffentlich-rechtliche Unterstützung zu erhalten. In semi-ariden und ariden Regionen der Welt sind die Süßwasserressourcen begrenzt. Der Versorgung des Bergbaus mit Wasser stehen oft Widerstände von bestehenden Wassernutzern entgegen oder es sind langwierige öffentlich-rechtliche Verfahren notwendig. Die Intercontinental Potash Corp (USA) (ICP) beschreibt in diesem Artikel, wie man aus dem tiefen Grundwasserleiter „Captain“ Brauchwasser für das Ochoa SOP Minenprojekt (Ochoa-Projekt) im Südosten von New Mexico (USA) gewinnen und somit die Trinkwasserressourcen schützen kann. Durch ein Programm, bestehend aus Erkundungsbohrungen, Grundwasserleitertests und Grundwasserströmungsmodellierung, konnte sichergestellt werden, dass der „Captain“-Grundwasserleiter die Wasserversorgung über einen Zeitraum von 50 Jahren, bei einer Pumprate von 252 l/s, sicher stellen kann. Es wurde in diesem Fall eine Grundwasserabsenkung von 200 m im geplanten Brunnenbereich vorhergesagt. Es wurde außerdem festgestellt, dass es zu einer Dezimierung des Pecos River, der einer zwischenstaatlichen Vereinbarung zur Entnahme von Wasser unterliegt, kommt. Durch die Maßnahmen werden bis zu 1,1 l/s aus dem Fluss entnommen, was zu minimalen Auswirkungen aufgrund der geringen Leitfähigkeit (1,5 × 10^-3 m/d) des örtlichen Bodens führt. Das Areal befindet sich in der Nähe der Grenze, welche den Grundwasserleiter in einen durch Lea County, New Mexico bewirtschaftet und einen mit dem Pecos River in Eddy County, New Mexico verbunden ist, teilt.

Una fuente de agua profunda, no potable, para el proyecto de la mina de sulfato de potasio (SOP) Ochoa, New Mexico, USA

Resumen

La competencia con las comunidades, agricultura e industria por fuentes de agua potable es un gran desafío para las compañías mineras que necesitan el soporte regulatorio y público para sus proyectos. En regiones áridas y semiáridas del mundo donde las fuentes de agua potable son limitadas, utilizar esas fuentes para operaciones mineras encuentra fuerte oposición entre los usuarios del agua o está sujeto a extensas revisiones regulatorias. Aquí describimos cómo Intercontinental Potash Corp. (USA) (ICP) desarrolló una fuente de agua profunda, no potable, desde el acuífero Capitán para su proyecto Ochoa SOP Mine Project (Ochoa Project) en el sudeste de New Mexico (USA) que resguarda las limitadas fuentes de agua potable. A través de un programa de perforación de pozos exploratorios, testeo del acuífero y modelado del flujo de agua subterránea, encontramos que el acuífero Capitán puede sustentar la velocidad de bombeo propuesta (252 L/s) por un período de 50 años y que el descenso de niveol se predice que sería hasta 200 m en el área de la zona de pozos. También encontramos que la merma del Río Pecos, que está conectado al acuífero y sujeto a acuerdos interestatales para distribución de agua, sería de hasta 1,10 L/s. Atribuímos el mínimo impacto del bombeo propuesto sobre el Río Pecos a la zona de baja conductividad hidráulica (1,5 × 10-3 m/día) cerca de la línea del condado que separa el lugar del acuífero donde el bombeo es propuesto en Lea County, New Mexico, del área donde el acuífero está conectado al Pecos River en Eddy County, New Mexico.

利用深层非饮用水为美国新墨西哥州奥乔亚(Ochoa)硫酸钾(SOP)开采项目供水

摘要

为了能够给拟建工程项目提供生产用水,采矿公司与社区、农业、工业等部门的饮用水资源竞争将通常要承受巨大的公众支持与制度管理压力。在全球范围内,干旱、半干旱地区水资源都非常缺乏和宝贵。想在这些地区利用饮用水为采矿供水,既要面临现有水资源用户的坚决反对又要等待漫长的政府管理审查。文章介绍了国际钾盐公司(Intercontinental Potash Corp., USA, ICP) 如何利用凯皮坦(Capitan)含水层为美国新墨西哥州东南部奥乔亚(Ochoa)硫酸钾盐开采项目进行深层非饮用水供水,实现当地宝贵饮用水资源保护。通过钻孔勘探、含水层抽水试验和地下水流模拟等手段,发现凯皮坦(Capitan)含水层能够为项目提供50年流量为252 L/s的供水,预测供水水源地最大水位降深将达200m。同时,该供水工程可能会引起佩科斯河(Pecos)1.10 L/s的流量衰减,佩科斯河(Pecos)是流域内受州际紧缩协议制约的河流。研究认为,之所以拟建供水方案对佩科斯河(Pecos)流量影响较小,主要是由于位于新墨西哥州(New Mexico)里县(Lea County)的拟建供水含水层与位于新墨西哥州(New Mexico)矣迪县(Eddy)的佩科斯河边界附近渗透性非常低(渗透系数1.5 × 10-3 m/day)所致。

Notes

Acknowledgments

We thank the shareholders of IC Potash Corp. (TSX:ICP, OTCQX:ICPTF) for their support in developing the Ochoa Project, Amber Whittaker for graphics, Amy Serrano for editing, and the women and men who participated in the drilling, construction, and testing of the deep groundwater wells. In addition, we are grateful for the support for the proposed Ochoa Project that ICP has received from the communities of Lea County and Eddy County, New Mexico, and for the constructive criticism we have received from Peggy Barroll of the New Mexico Office of the State Engineer and David Herrell of the U.S. Dept of the Interior Bureau of Land Management Carlsbad Field Office.

References

  1. ASTM (2008) D5611-94: standard guide for conducting a sensitivity analysis for a groundwater flow model application. Annual book of ASTM standards, vol 04.08. ASTM International, West Conshohocken. doi: 10.1520/D5981-96R08 Google Scholar
  2. Barker JM, Austin GS (1993) Economic Geology of the Carlsbad Potash District, New Mexico. New Mexico Geological Soc Guidebook, 44th Field Conf, Carlsbad Region, New Mexico and West Texas, pp 283–291Google Scholar
  3. Barroll P, Jordan D, Ruskauff G (2004) The Carlsbad area groundwater flow model. Consultant’s report prepared by INTERA Inc and submitted to the New Mexico Interstate Stream CommissionGoogle Scholar
  4. Beach JA, Ashworth JB, Finch ST, Chastain-Howley A, Calhoun K, Urbanczyk KM, Sharp JM, Olson J (2004) Groundwater availability model for the igneous and parts of the West Texas Bolsons (Wild Horse Flat, Michigan Flat, Ryan Flat and Lobo Flat) aquifers. Prepared for the Texas Water Development BoardGoogle Scholar
  5. Beauheim RL, Saulnier GJ, Avis JD (1991) Interpretation of brine-permeability tests of the Salado formation at the waste isolation pilot plant site: first interim report, SAND90-0083. Sandia National Laboratories, AlbuquerqueCrossRefGoogle Scholar
  6. Garber RA, Grover GA, Harris PM (1989) Geology of the Capitan shelf margin-subsurface data from the Northern Delaware Basin. In: Harris PM, Grover GA (eds) Subsurface and outcrop examination of the Capitan shelf margin—a core workshop, soc of economic paleontologists and mineralogists core workshop 13, p 3-269Google Scholar
  7. Harbaugh AW, Banta ER, Hill MC, Mcdonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. USGS OFR 00-92, Washington DC, USAGoogle Scholar
  8. Harris PM, Saller AH (1999) Subsurface expression of the Capitan depositional system and implications for hydrocarbon reservoirs, northeastern Delaware Basin. In: Saller AH, Harris PM, Kirkland BL, Mazzullo SJ (eds) Geologic framework of the Capitan reef, soc for sedimentary geology (SEPM) special Publ no 65, Univ of California Press, Berkeley, CA, USA, ISBN: 1565760638, 9781565760639Google Scholar
  9. Hill CA (1996) Geology of the Delaware Basin Guadalupe, Apache, and Glass Mountains, New Mexico and Texas. Permian Basin Section-SEPM Pub No. 96-39. Univ of California Press, Berkeley, CA, USAGoogle Scholar
  10. Hiss WL (1975) Stratigraphy and groundwater hydrology of the Capitan aquifer, Southeastern New Mexico and Western Texas. Unpubl Ph. Diss, Univ of Colorado, Boulder, CO, USAGoogle Scholar
  11. Hiss WL (1980) Movement of ground water in Permian Guadalupian aquifer systems, southeastern New Mexico and western Texas. In: Dickerson PW, Hotter JM (eds) New Mexico Geological Society Guidebook, 31st field conference. Trans-Pecos Region, p 289–294Google Scholar
  12. Hood JW, Kister LR (1962) Saline-water resources of New Mexico. USGS water supply paper 1601. http://pubs.usgs.gov/wsp/1601/report.pdf
  13. Leedshill-Herkenhoff, Inc, John Shomaker & Assoc, Inc, Montgomery & Andrews, PA (2000) Final report, Lea County regional water plan. Prepared for Lea County water users assoc. http://www.ose.state.nm.us/Planning/RWP/region_16.php
  14. Mercer JW (1983) Geohydrology of the proposed waste isolation pilot plant site, Los Medaños area, Southeastern New Mexico. USGS water-resources investigations report 83-4016, Washington DC, USAGoogle Scholar
  15. Papadopulos (SS Papadopulos and Assoc) (2008) Carlsbad area groundwater model, superposition version GUI. Prepared for the State of New Mexico/Interstate Stream Commission, Santa Fe, NM, USAGoogle Scholar
  16. Standen A, Finch S, Williams R, Lee-Brand B, Kirby P (2009) Capitan reef complex structure and stratigraphy. Prepared for the Texas Water Development Board, Austin, TX, USAGoogle Scholar
  17. Texas Water Development Board (2010) Aquifers of West Texas. In: Mace RE, Mullican WF, Angle ES (eds) Texas Water Development Board Report 356, Austin, TX, USAGoogle Scholar
  18. Ward RF, Kendall CG, Harris PM (1986) Upper Permian (Guadalupian) facies and their associations with hydrocarbons—Permian Basin, West Texas and New Mexico. Am Assoc Petr Geol B 70(3):239–262Google Scholar
  19. Watermark Numerical Computing (2005) PEST, model independent parameter estimation. User manual, 5th ednGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Castiglia
    • 1
    Email author
  • William Linderfelt
    • 1
  • Cheng Cheng
    • 1
  • Annelia Tinklenberg
    • 1
  • David Jordan
    • 1
  • Tim Dale
    • 1
  • Randy Foote
    • 2
  • Terre Lane
    • 2
  1. 1.INTERA Inc.AlbuquerqueUSA
  2. 2.Intercontinental Potash CorpGoldenUSA

Personalised recommendations