Water Quality Assessment of the Mining-Impacted Elqui River Basin, Chile

Wassergüte des Bergbaulich Beeinflußten Elqui-Flußbeckens in Chile

Relevamiento de la Calidad del Agua de la Cuenca, impactada por la Minería, del Río Elqui en Chile

受采矿影响的智利 埃尔基河 (Elqi River, Chile)流域水质评价

Abstract

Multivariate data analysis techniques were used to identify the interrelationships between the physical–chemical analyses of 22 parameters sampled monthly from 1991 to 2007 at 16 monitoring stations along the Elqui river and its tributaries to characterize the scale of the geogenic and anthropogenic impacts on the river’s water quality. Principal component analysis was used to identify the differences and similarities between variables in the watershed. Factorial indices, computed to highlight the sections of the river and tributaries more influenced by hydrothermal, mining or agricultural activities, made it possible to synthesize groups of parameters with similar characteristics into a single value.

Zusammenfassung

Von 1991 bis 2007 wurden an 16 Beobachtungstationen entlang des Elqui-Flusses und seinen Zuflüssen monatlich 22 physiko-chemische Parameter gemessen. Der Grad geogener und anthropogener Einflüsse auf die Wasserqualität wurde mit multivariaten Analysen untersucht. Hauptkomponentenanalyse wurde angewendet, um Unterschiede und Ähnlichkeiten zwischen Variablen in dem Wassereinzugsgebiet zu identifizieren. Um Abschnitte des Flusses und seiner Zuflüsse mit stärkerem Einfluß hydrothermaler, bergaulicher oder landwirtschaftlicher Aktivitäten hervorzuheben, wurden faktorielle Kennzahlen berechnet. Damit war es möglich, Gruppen von Parametern ähnlicher Besonderheiten in einen Einzelwert zusammenzuführen.

Resumen

Se utilizaron técnicas de análisis multivariante para identificar las relaciones entre los análisis de 22 parámetros fisicoquímicos obtenidos mensualmente desde 1991 hasta 2007 en 16 estaciones de monitorio a lo largo del Río Elqui y sus tributarios, en función de caracterizar de la escala de los impactos geogénicos y antropogénicos sobre la calidad del agua del río. El análisis de componentes principales (PCA) fue usado para identificar las diferencias y similitudes entre variables de la cuenca. Los índices factoriales, estimados para destacar las zonas del río y sus tributarios más influida por las actividades minerales, hidrotérmicas o agrícolas, permitieron reunir grupos de parámetros con similares características dentro de un solo valor.

抽象

化学水质监测指标之间的关系,以研究地质成因和人类活动作用对流域水质的影响程度。利用主成分分析法(PCA)识别了流域内各变量之间的差异与相似性。利用因子分析突出了埃尔基河及其支流受热液、采矿和农业活动的影响程度,使具有相似特征的多元变量转化为单一变量成为可能。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Coulthard TJ, Macklin MG (2003) Modeling long-term contamination in river systems from historical metal mining. Geology 31:451–454

    Article  Google Scholar 

  2. Demirel Z, Güller C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey). Environ Geol 49:477–487

    Article  Google Scholar 

  3. Dittmar T (2004) Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile). Sci Total Environ 325:193–207

    Article  Google Scholar 

  4. Dos Santos JS, de Oliveira E, Bruns RE, Gennari RF (2004) Evaluation of the salt accumulation process during inundation in water resource of Contas River basin (Bahia-Brazil) applying principal component analysis. Water Res 38(6):1579–1585

    Article  Google Scholar 

  5. Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  6. Eaton AD, Clesceri LS, Greenberg AE (eds) (1995) Standard methods for the examination of water and wastewater, 19th edn. Office of the American Public Health Assoc, Washington

    Google Scholar 

  7. Edraki M, Golding SD, Baublys KA, Lawrence MG (2005) Hydrochemistry, mineralogy, and sulphur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia. Appl Geochem 20:789–805

    Article  Google Scholar 

  8. Galleguillos G (2004) Mining activities and hydraulic works effects over the water quality of Elqui river and its tributaries. Graduation Project, Univ of La Serena (in Spanish)

    Google Scholar 

  9. Galleguillos G, Oyarzún J, Maturana H, Oyarzun R (2008) Retención de arsénico en embalses: el caso del río Elqui, Chile. Ing Hidrául Mex 23(3):29–36

    Google Scholar 

  10. Gomshei MM, Allen DM (2000) Potential application of oxygen-18 and deuterium in mining effluent and acid rock drainage studies. Environ Geol 39:767–773

    Article  Google Scholar 

  11. Güller C, Thyne G, McGray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Article  Google Scholar 

  12. Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Res 34:807–816

    Article  Google Scholar 

  13. Helsel D, Hirsch R (1993) Statistical methods in water resources. Elsevier, NYC

    Google Scholar 

  14. Higueras P, Oyarzun R, Oyarzún J, Maturana H, Lillo J, Morata D (2004) Environmental assessment of copper–gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile. Appl Geochem 19:1855–1864

    Article  Google Scholar 

  15. Huang F, Wang X, Lou L, Zhou Z, Wu J (2009) Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res 44(5):1562–1572

    Article  Google Scholar 

  16. Jannas RR, Bowers TS, Petersen U, Beane RE (1999) High-sulfidation deposit types in the El Indio district, Chile. Soc Econ Geol 7:27–59

    Google Scholar 

  17. Kalthoff N, Fiebig-Wittmaack M, Meiβner C, Kohler M, Uriarte M, Bischoff-Gauβ I, Gonzales E (2006) The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J Arid Environ 65:420–443

    Article  Google Scholar 

  18. Khayat S, Hötzl H, Geyer S, Ali W (2006) Hydrochemical investigations of water from the Pleistocene wells and springs, Jericho area, Palestine. Hydrogeol J 14:192–202

    Article  Google Scholar 

  19. Llanca JC, Miranda EE (2003) Groundwater studies in the Elqui river watershed. Civil Eng Graduation Project, Univ of La Serena (in Spanish)

    Google Scholar 

  20. Oyarzun R, Ortega L, Sierra J, Lunar R, Oyarzún J (1998) Cu, Mn, and Ag mineralization in the Quebrada Marquesa Quadrangle, Chile: the Talcuna and Arqueros districts. Miner Deposita 33:547–559

    Article  Google Scholar 

  21. Oyarzun R, Lillo J, Higueras P, Oyarzún J, Maturana H (2004) Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio-Tambo district) vs. geologic processes. J Geochem Explor 84:53–64

    Article  Google Scholar 

  22. Oyarzun R, Guevara S, Oyarzún J, Lillo J, Maturana H, Higueras P (2006) The As-contaminated Elqui river basin: a long lasting perspective (1975–1995) covering the initiation and development of Au–Cu–As mining in the high Andes of northern Chile. Environ Geochem Health 28(5):431–443

    Article  Google Scholar 

  23. Oyarzún J, Maturana H, Paulo A, Pasieczna A (2003) Heavy metals in stream sediments from the Coquimbo Region (Chile): effects of sustained mining and natural processes in a semi-arid Andean basin. Mine Water Environ 22:155–161

    Article  Google Scholar 

  24. Oyarzún J, Carvajal MJ, Maturana H, Núñez J, Kretschmer N, Amézaga J, Rötting T, Strauch G, Thyne G, Oyarzún R (2013) Hydrochemical and isotopic patterns in a calc-alkaline Cu- and Au-rich arid Andean basin: the Elqui river watershed, North Central Chile. Appl Geochem 33:50–63

    Article  Google Scholar 

  25. Paskoff R (1993) Geomorfología de Chile Semiárido. Departamento de Publicaciones, Universidad de La Serena. La Serena, Chile

  26. Perez C (2005) Climatic change: vunerability, adaptation and role of the institutions. Study of cases in the Elqui Valley. Graduation Project, Univ of La Serena (in Spanish)

  27. Ribeiro L, Chambel A, Duque J, Fialho A, Condeça V, Aires P, Guerreiro S, Andrade P, Mira F (1999) Development and application of hydrochemical factorial indexes using principal component analysis in hard aquifers of Ossa Morena zone in Alentejo (Portugal). In: Fendeková M, Fendek M (eds) Hydrogeology and land use management. IAH Proc, Slovak Assoc of Hydrogeologists Publ, pp 485–490

  28. Shi JA, Wang Q, Chen GJ, Wang GY, Zhang ZN (2001) Isotopic geochemistry of the groundwater systems in arid and semiarid areas and its significance: a case study in Shiyang River basin, Gansu Province, northwest China. Environ Geol 40:557–565

    Article  Google Scholar 

  29. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992

    Article  Google Scholar 

  30. Thyne G, Cüneyt G, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42(5):711–723

    Article  Google Scholar 

  31. Zhou F, Huang GH, Guo HC, Zhang W, Hao ZJ (2007) Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res 41(15):3429–3439

    Article  Google Scholar 

  32. Zhu C, Anderson G (2002) Environmental applications of geochemical modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the Dirección General de Aguas de Chile (Ministerio de Obras Públicas) for allowing the use of their data files This study was prepared in the context of the project CAMINAR–“Catchment Management and Mining Impacts in Arid and Semi-arid South America”, and co-funded by the European Commission under its 6th Framework Programme of International Cooperation, contract INCO-CT2006-032539. The information in this document is provided without any guarantee or warranty that it is useful for any particular purpose. Users of the information do so solely at their own risk and liability. This document does not represent the official policy or views of the European Commission, Parliament, or Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Ribeiro.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ribeiro, L., Kretschmer, N., Nascimento, J. et al. Water Quality Assessment of the Mining-Impacted Elqui River Basin, Chile. Mine Water Environ 33, 165–176 (2014). https://doi.org/10.1007/s10230-014-0276-6

Download citation

Keywords

  • Acid drainage
  • Arid zones
  • Elqui river
  • Mining pollution
  • PCA