Mine Water and the Environment

, Volume 32, Issue 4, pp 285–292 | Cite as

Upper and Lower Concentration Thresholds for Bulk Organic Substrates in Bioremediation of Acid Mine Drainage

  • R. Naresh Kumar
  • Clint D. McCullough
  • Mark A. Lund
Technical Article

Abstract

Acidic pit lakes can form in open cut mine voids that extend below the groundwater table. The aim of this research was to determine what bulk organic material concentrations best stimulated sulphate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment within a pit lake. An experiment was carried out to assess the effect of different substrate concentrations of sewage sludge on AMD bioremediation efficiency. Experimental microcosms were made of 300 mm long and 100 mm wide acrylic cores, with a total volume of 1.8 L. Four different concentrations of sewage sludge (ranging from 30 to 120 g/L) were tested. As the sewage sludge concentration increased, the bioremediation efficiency also increased, reflecting the higher organic carbon concentrations. Sewage sludge contributed alkaline materials that directly neutralised the AMD in proportion to the quantity added and therefore played a primary role in stimulating SRB bioremediation. The lowest concentration of sewage sludge (30 g/L) tested proved to be inadequate for effective SRB bioremediation. However, there were no measurable beneficial effects on SRB bioremediation efficiency when sewage sludge was added at concentrations >60 g/L. We compared our results with existing literature data to develop a conceptual model for remediation of AMD in pit lakes through organic material amendments. The model indicated that labile organic carbon availability was more important to the bioremediation rate than AMD strength, so long as iron and sulphate concentrations were not limiting. The conceptual model also indicates that bioremediation may still occur when only low concentrations of organic carbon are present in the pit lakes, albeit at a very slow rate. The model also demonstrates the presence of an organic material amendment threshold where excess organic carbon does not measurably influence the final outcome. The conceptual model defined is well supported by the results of the microcosm experiment.

Keywords

SRB Organic carbon Sewage sludge pH Sulphate Conceptual model 

Obere und untere Schwellenwerte bei der Verwendung von organischem Substrat zur Bioremediation von saurem Grubenwasser

Zusammenfassung

Saure Tagebaurestseen können bis unter den Grundwasserspiegel reichen. Ziel dieser Untersuchung war es, die optimale Gesamtkonzentration an organischem Material für die Stimulation von Sulfat-Reduzierenden Bakterien (SRB) bei der Aufbereitung von saurem Grubenabwasser in Tagebaurestseen zu bestimmen. Hierzu wurde untersucht, welche Klärschlamm-Konzentration die höchste Effizienz bei der Bioremediation hat. In Laboruntersuchungen wurden 300 mm lange und 100 mm breite Acrylgefäße mit 1,8 l Volumen verwendet, wobei vier unterschiedliche Klärschlammkonzentrationen (30 bis 120 g/l) eingesetzt wurden. Mit steigenden Klärschlammgehalten nimmt die Effizienz der Bioremediation aufgrund der höheren organischen Anteile zu. Das durch den Klärschlamm beigesteuerte alkalische Material, welches relativ zur verwendeten Menge direkt saure Grubenabwässer (AMD) neutralisiert, ist der Hauptgrund für die Stimulierung von SRB bei der Bioremediation. Die geringste Klärschlammkonzentration (30 g/l) zeigte für eine effiziente Bioremediation durch SRB nur unzureichende Wirkung. Gleichzeitig war jedoch auch kein messbarer Effekt bei einer Konzentration über 60 g/l zu beobachten. Die Ergebnisse wurden mit Literaturwerten verglichen, um ein konzeptionelles Modell zur Sanierung saurer Tagebaurestseen durch die Zugabe von organischem Material zu entwickeln. Die Modellergebnisse zeigten, dass Schwankungen in der Verfügbarkeit von organischem Material einen größeren Effekt auf die Bioremediationrate hatten als die vorhandene AMD-Stärke, so lange die Eisen- und Sulfatkonzentration nicht limitiert war. Aus dem Modell war zudem ableitbar, dass eine Bioremediation auch bei geringen Mengen an organischem Material in Tagebaurestseen stattfindet, jedoch mit sehr kleinen Raten. Das Modell ergab gleichzeitig einen oberen Schwellenwert, über dem eine zusätzliche Zugabe von organischem Material keinen weiteren messbaren Effekt bedingt. Die Ergebnisse des konzeptionellen Modells werden durch die o. g. Laborergebnisse zusätzlich gestützt.

Umbrales máximo y mínimo de concentración de sustancias orgánicas en la biorremediación de drenaje ácido de minas

Resumen

Los lagos ácidos en hoyos de minas que se forman durante el cierre de minas a cielo abierto, pueden extenderse a la capa freática. El objetivo de esta investigación fue determinar que concentraciones de material orgánico estimulan mejor a las bacterias sulfato-reductoras (SRB) para el tratamiento de drenaje ácido de minas (DAM) dentro de un lago de pozo de mina. El efecto de diferentes concentraciones de lodo residual sobre la eficiencia de la biorremediación de DAM fue evaluado experimentalmente. Se utilizó un microcosmos realizado en un recipiente de acrílico de 300 mm de longitud y 100 mm de ancho, con un volumen total de 1,8 L. Se testearon 4 concentraciones diferentes de lodo residual (entre 30 y 120 g/L). A medida que la concentración de lodo se incrementaba, la eficiencia de la biorremediación también crecía, reflejando mayores concentraciones de carbono orgánico. El lodo residual aporta materiales alcalinos que directamente neutralizan el DAM en proporción directa a la cantidad agregada y consecuentemente juegan un rol primario en la estimulación de la biorremediación por SRB. La menor concentración utilizada (30 g/L) fue inadecuada para una efectiva biorremediación por SRB. No obstante, no hubo efectos beneficiosos significativos en la eficiencia de la biorremediación cuando los lodos residuals fueron agregados a concentraciones >60 g/L. Hemos comparado nuestros resultados con datos de literatura para desarrollar un modelo conceptual para la remediación de DAM en lagos de hoyos de minas a través de agregados de material orgánico. El modelo indicó que la disponibilidad de carbono orgánico lábil fue más importante para la velocidad de biorremediación que la fuerza del DAM. El modelo conceptual también indica que la biorremediación podría incluso ocurrir si bajas concentraciones de carbono orgánico están presentes aunque a muy baja velocidad. El modelo también demuestra que existe un umbral de agregado de material orgánico a partir del cual mayor agregado de carbono orgánico no produce una influencia apreciable. Este modelo conceptual está avalado por los resultados del experimento en microcosmos.

酸性矿山废水生物修复技术有机底物浓度的上限与下限研究

抽象

露天开采深度往往延伸至地下水位以下,而形成采后酸性矿坑湖。本研究目的旨在确定废弃矿坑酸性矿山废水(AMD)生物处理技术激发硫还原细菌活性的最佳有机物浓度。试验评价了不同浓度底泥对AMD生物修复效率的影响。微型模拟试验系统由300 mm长、100 mm宽的丙烯酸酯组成,试验系统总容积1.8L。分别试验了四种不同污泥浓度(30~120 g/L)。当污泥浓度增加时,有机炭浓度提高,生物修复效率增大。污泥能够生成直接中和AMD的碱性物质,碱性物质生成量与污泥增加量成正比,是激发硫还原细菌活性的重要物质。试验证实,当污泥浓度(30 g/L)最低时,硫还原细菌生物修复效率较低;但是,当污泥浓度大于60 g/L时,继续增加污泥浓度也不能明显提高硫还原细菌生物修复效率。我们将试验结果与现有文献对比,建立了一个酸性矿坑湖AMD有机修复的概念模型。模型表明:只要不限定铁和硫酸盐浓度,易分解的有机碳比AMD酸性强弱对AMD生物修复速率更重要;即使矿坑湖中仅存在低浓度有机碳,生物修复就会缓慢发生;模型也说明确实存在有机物浓度阈值,超过阈值后的有机炭对最终结果不产生显著影响。模拟试验的结果验证了概念模型的正确性。

References

  1. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Assoc, American Water Works Assoc, Water Environment Federation, WashingtonGoogle Scholar
  2. Bermúdez A, Delgado JL, García-García LM, Quintela P (2007) A three layer model to estimate pit lake water quality. Proceedings of the IMWA symposium 2007: water in mining environments, Cagliari, Italy, pp 141–145. http://www.imwa.info/docs/imwa_2007/IMWA2007_Bermudez.pdf
  3. Castendyk D (2011) Lessons learned from pit lake planning and development. In: McCullough CD (ed) Mine Pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 15–28Google Scholar
  4. Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39:1254–1260CrossRefGoogle Scholar
  5. Castro JM, Wielinga BW, Gannon JE, Moore JN (1999) Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic waste. Water Environ Res 71:218–223CrossRefGoogle Scholar
  6. Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277CrossRefGoogle Scholar
  7. Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:10CrossRefGoogle Scholar
  8. Connell WE, Patrick WHJ (1968) Sulfate reduction in soil: effects of redox potential and pH. Science 159:86–87CrossRefGoogle Scholar
  9. Figueroa L, Seyler J, Wildeman T (2004) Characterization of organic substrates used for anaerobic bioremediation of mining impacted waters. Proceedings of the international mine water association conference, Newcastle, pp 43–52Google Scholar
  10. Fisher TSR, Lawrence GA (2006) Treatment of acid rock drainage in a meromictic mine pit lake. J Environ Eng 132:515–526CrossRefGoogle Scholar
  11. Frömmichen R, Kellner S, Friese K (2003) Sediment conditioning with organic and/or inorganic carbon sources as a first step in alkalinity generation of acid mine pit lake water (pH 2–3). Environ Sci Tech 37:1414–1421CrossRefGoogle Scholar
  12. Frömmichen R, Wendt-Potthoff K, Friese K, Fischer R (2004) Microcosm studies for neutralization of hypolimnic acid mine lake water (pH 2.6). Environ Sci Tech 38:1877–1887CrossRefGoogle Scholar
  13. Fyson A, Nixdorf B, Kalin M (2006) The acidic lignite pit lakes of Germany—microcosm experiments on acidity removal through controlled eutrophication. Ecol Eng 28:288–295CrossRefGoogle Scholar
  14. Gibert O, de Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1:327–333CrossRefGoogle Scholar
  15. Gray NF, O’Neill C (1997) Acid mine-drainage toxicity testing. Environ Geochem Health 19:165–171CrossRefGoogle Scholar
  16. Harris MA, Ragusa S (2000) Bacterial mitigation of pollutants in acid drainage using decomposable plant material and sludge. Environ Geol 40:195–215CrossRefGoogle Scholar
  17. Harris MA, Ragusa S (2001) Bioremediation of acid mine drainage using decomposable plant material in a constant flow bioreactor. Environ Geol 40:1192–1204CrossRefGoogle Scholar
  18. Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342CrossRefGoogle Scholar
  19. Koschorreck M, Frömmichen R, Herzsprung P, Tittel H, Wendt-Potthoff K (2002) The function of straw for in situ remediation of acidic mining lakes: results from an enclosure experiment. Water Air Soil Pollut 2:97–109CrossRefGoogle Scholar
  20. Koschorreck M, Bozau E, Frommichen R, Geller W, Herzsprung P, Wendt-Potthoff K (2007) Processes at the sediment water interface after addition of organic matter and lime to an acid pit lake mesocosm. Environ Sci Tech 41:1608–1614Google Scholar
  21. Koschorreck M, Boehrer B, Friese K, Geller W, Schultze M, Wendt-Potthoff K (2011) Oxygen depletion induced by adding whey to an enclosure in an acidic mine pit lake. Ecol Eng 37:1983–1989CrossRefGoogle Scholar
  22. Kumar RN, McCullough CD, Lund MA (2009) Water resources in Australian mine pit lakes. Min Technol 118:205–211CrossRefGoogle Scholar
  23. Kumar NR, McCullough CD, Lund MA (2011a) Bacterial sulfate reduction based ecotechnology for remediation of acidic pit lakes. In: McCullough CD (ed) Mine Pit lakes: closure and management. Australian Centre for Geomechanics, Perth, pp 121–134Google Scholar
  24. Kumar RN, McCullough CD, Lund MA, Newport M (2011b) Sourcing organic materials for pit Lake Bioremediation in remote mining regions. Mine Water Environ 30:296–301CrossRefGoogle Scholar
  25. Kumar RN, McCullough CD, Lund MA (2011c) How does storage affect the quality and quantity of organic carbon in sewage for use in the bioremediation of acidic mine waters? Ecol Eng 37:1205–1213CrossRefGoogle Scholar
  26. La HJ, Kim KH, Quan ZX, Cho YG, Lee ST (2003) Enhancement of sulfate reduction activity using granular sludge in anaerobic treatment of acid mine drainage. Biotechnol Lett 25:503–508CrossRefGoogle Scholar
  27. Liang HC, Thomson BM (2009) Minerals and mine drainage. Water Environ Res 81:1615–1663CrossRefGoogle Scholar
  28. Martins MSF, Santos ES, Barros RJB, Costa MCSS (2008) Treatment of acid mine drainage with sulphate-reducing bacteria using a two stage bioremediation process. Proceedings of the 10th international mine water Association (IMWA) congress, Karlovy Vary, Czech Republic, pp 297–300. http://www.imwa.info/docs/imwa_2008/IMWA2008_076_Martins.pdf
  29. McCullough CD (2008) Approaches to remediation of acid mine drainage water in pit lakes. Int J Mining Reclam Environ 22:105–119CrossRefGoogle Scholar
  30. McCullough CD, Lund MA (2011) Bioremediation of Acidic and Metalliferous Drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J Environ Manage 92:2419–2426CrossRefGoogle Scholar
  31. McCullough CD, Lund MA, May JM (2006) Microcosm testing of municipal sewage and green waste for full-scale remediation of an acid coal pit lake, in semi-arid tropical Australia. Proceedings of the 7th international conference on acid rock drainage (ICARD). American society of mining and reclamation (ASMR), St Louis, MOGoogle Scholar
  32. McCullough CD, Lund MA, May JM (2008) Field scale trials treating acidity in coal pit lakes using sewage and green waste. Proceedings of the 10th IMWA congress, Karlovy Vary, pp 599–602Google Scholar
  33. McCullough CD, Steenbergen J, te Beest C, Lund MA (2009) More than water quality: environmental limitations to a fishery in acid pit lakes of Collie, south-west Australia. Proceedings of the IMWA conference, PretoriaGoogle Scholar
  34. McCullough CD, Kumar NR, Lund MA, Newport M, Ballot E, Short D (2012) Riverine breach and subsequent decant of an acidic pit lake: evaluating the effects of riverine flow-through on lake stratification and chemistry. In: Proceedings of the international mine water association (IMWA) congress. Bunbury, Australia, pp 533–540Google Scholar
  35. Moreira S, Boehrer B, Schultze M, Samper JA (2009) Coupled hydrodynamic-geochemical model of meromictic pit Lake Waldsee. Proceedings of the IMWA conference, Pretoria, pp 982–987Google Scholar
  36. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454Google Scholar
  37. Peine A, Peiffer S (1998) In-lake neutralization of acid mine lakes. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Berlin, pp 47–63CrossRefGoogle Scholar
  38. Prasad D, Henry JG (2009) Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system. Environ Tech 30:151–160CrossRefGoogle Scholar
  39. Strosnider WH, Nairn RW (2010) Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple mutual incubations and limestone. J Geochem Explor 105:34–42CrossRefGoogle Scholar
  40. Tuttle JH, Dugan PR, Rendles CI (1969) Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl Microbiol 17:297–302Google Scholar
  41. Waybrant KR, Blowes DW, Ptacek CJ (1998) Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ Sci Tech 32:1972–1979CrossRefGoogle Scholar
  42. Wendt-Potthoff K, Neu TR (1998) Microbial processes for potential in situ remediation of acidic lakes. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Berlin, pp 269–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Naresh Kumar
    • 1
    • 3
  • Clint D. McCullough
    • 1
    • 2
  • Mark A. Lund
    • 1
  1. 1.Mine Water and Environment Research Centre (MiWER), Centre for Ecosystem ManagementEdith Cowan UniversityJoondalupAustralia
  2. 2.Golder Associates Pty LtdWest PerthAustralia
  3. 3.Environmental Science and Engineering GroupBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations