Skip to main content
Log in

Chemical Fractionation and Contamination Intensity of Trace Elements in Stream Sediments at the Sarcheshmeh Porphyry Copper Mine, SE Iran

Chemische Fraktionierung und Verschmutzungsintensität durch Spurenelemente in Flusssedimenten des Sarcheshmeh Porphyr-Kupfer Bergwerks, SE Iran

El fraccionamiento químico y la intensidad de la contaminación de elementos traza en sedimentos de la mina porfirítica de cobre Sarcheshmeh, sudeste de Iran

伊朗东南部 Sarcheshmeh 斑岩铜矿矿区河泥中微量元素的化学形态及污染强度

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

This paper presents chemical fractionation and contamination intensities of trace elements in stream sediments at the Sarcheshmeh mine, southeastern Iran, which is one of the world’s largest Oligo-Miocene porphyry copper deposits. Evaluation of environmental pollution indices and maximum probable background concentrations revealed that As, Cu, Cd, Mo, Pb, Sb, Se, S, and Zn are highly concentrated in the contaminated sediments, while Cr, Co, Ni, Fe, and Mn show lower enrichment values. Discharges of industrial effluents (especially those contaminated by tailings), reject waste from the semi-autogenous mill, and rock waste drainages are the main anthropogenic contaminant sources. High values of As, Cu, Fe, Mo, Pb, and Zn were associated with the oxidizable, primary sulfide, and residual sediment fractions. Relatively high percentages of Co (>92 %), Cr (>58 %), Cu (>79 %), Fe (>40 %), Mn (>97 %), Ni (>87 %), and Zn (>83 %) in the sediments associated with the rock waste drainages were readily released during the extraction of water-soluble, exchangeable, and carbonate fractions. Sediments that received reject waste drainages were also polluted by As (>351.7 mg kg−1), Cu (>1.58 %), Mo (>91.8 mg kg−1), Pb (>291.8 mg kg−1), and Zn (>762.4 mg kg−1). A large percentage of these contaminants were found to be adsorbed and co-precipitated with amorphous Fe-oxides and carbonate phases. The chemical fractionation pattern of the potentially hazardous trace elements corresponded well with the mineralogical composition of the contaminated sediments.

Zusammenfassung

Dieser Artikel präsentiert die chemische Fraktionierung und den Grad der Kontamination durch Spurenelemente in den Flusssedimenten des Sarcheshmeh Bergwerks im südöstlichen Iran. Es ist eines der weltweit größten oligo-miozänen Kupfer- Porphyr-Vorkommen. Durch die Auswertung der Kennzahlen zur Umweltverschmutzung und der höchstmöglichen Hintergrundkonzentrationen zeigt sich, dass As, Cu, Cd, Mo, Pb, Sb, Se, S und Zn in den belasteten Sedimenten hoch konzentriert sind. Cr, Co, Ni, Fe und Mn dagegen zeigen niedrigere Anreicherungswerte. Die Einleitung industrieller Abwässer (vornehmlich verunreinigt durch Aufbereitungsrückstände), Abgänge der halbautomatischen Aufbereitungsanlage und Wässer aus den Abraumhalden sind die Hauptquellen der anthropogenen Verunreinigung. Hohe Werte von As, Cu, Fe, Mo, Pb und Zn sind an die oxidierbare Fraktion, an die primär sulfidische und die Residualfraktion gebunden. Relativ hohe Gehalte an Co (>92 %), Cr (>58 %), Cu (>79 %), Fe (>40 %), Mn (>97 %), Ni (>87 %) und Zn (>83 %) wurden in den Sedimenten, die mit den Abraumhalden in Zusammenhang stehen, von der wasserlöslichen, der austauschbaren und der Karbonatfraktion gelöst. Sedimente, die von den Abgängen stammen, sind außerdem durch As (>351.7 mg kg−1), Cu (>1.58 %), Mo (>91.8 mg kg−1), Pb (>291.8 mg kg−1) und Zn (>762.4 mg kg−1) verunreinigt. Wir konnten feststellen, dass ein Großteil der Verunreinigungen an die amorphen Eisenoxide und Karbonatphasen gekoppelt sind und gemeinsam mit diesen ausfallen. Das Muster der chemischen Fraktionierung der möglicherweise gefährlichen Spurenelemente stimmt mit der mineralogischen Beschaffenheit der belasteten Sedimente überein.

Resumen

Este trabajo presenta el fraccionamiento químico y las intensidades de contaminación de elementos traza en los sedimentos de la mina Sarcheshmeh mine, en el sudeste de Iran, que es uno de los mayores depósitos Oligo-Mioceno de cobre porfirítico en el mundo. La evaluación de los índices de contaminación ambiental y las concentraciones máximas revelaron que As, Cu, Cd, Mo, Pb, Sb, Se, S, y Zn están altamente concentrados en los sedimentos, mientras Cr, Co, Ni, Fe, y Mn están en menores valores. Las descargas de efluentes industriales (especialmente aquellos contaminados por las colas), los residuos descartados por el molino semi-autógeno y los drenajes de residuos de roca, son las principales fuentes de contaminación antropogénica. Altos valores de As, Cu, Fe, Mo, Pb, y Zn estaban asociados con las fracciones oxidables, de sulfuros primarios y a la fracción residual. Altos porcentajes de Co (>92 %), Cr (>58 %), Cu (>79 %), Fe (>40 %), Mn (>97 %), Ni (>87 %), y Zn (>83 %) en los sedimentos asociados con los drenajes de residuos de roca fueron liberados durante la extracción de las fracciones solubles en agua, intercambiable y de carbonatos. Los sedimentos que recibieron drenajes de residuos descartados estaban también contaminados por As (>351,7 mg kg−1), Cu (>1,58 %), Mo (>91,8 mg kg−1), Pb (>291,8 mg kg−1), y Zn (>762,4 mg kg−1). Un gran porcentaje de estos contaminantes fueron encontrados adsorbidos y co-precipitados con fases de carbonato y óxidos amorfos de Fe. El fraccionamiento químico de los elementos trazas potencialmente peligrosos, se correlacionan bien con la composición mineralógica de los sedimentos contaminados.

抽象

伊朗东南部 Sarcheshmeh 矿是世界上最大的渐新-中新世斑岩铜矿之一。本文研究了 Sarcheshmeh 矿区河泥中微量元素的化学形态及污染强度。环境污染指数和离子最大可能背景浓度(MPBC)研究显示, 受污染河泥中砷, 铜, 镉, 钼, 铅, 锑, 硒, 硫和锌富集程度高, 而铬, 钴, 镍, 铁和锰富集程低。工业废水(尤其是尾矿废水), 半自磨厂废脚料和废矿石污水是主要人类污染源。高浓度的砷, 铜, 铁, 钼, 铅, 锌与可氧化的原生硫化物及其残渣态相关。废矿石污水使河泥中钴(>92 %), 镉(>58 %), 铜 (>79 %), 铁(>40 %), 锰(>97 %), 镍(>87 %)以及锌(>83 %)等相对含量较高, 且在提取可溶态, 可交换态和碳酸盐形态时稳定释出。同时,河泥在接受废脚料污水时再次被砷(>351.7 mg kg−1), 铜(>1.58 %), 钼(>91.8 mg kg−1), 铅(>291.8 mg kg−1)和锌Zn (>762.4 mg kg−1)等污染。研究表明, 大部分污染物被非晶铁氧化物和碳酸盐吸附和沉淀,具有潜在危险的微量元素的化学形态与受污染河泥的矿物成分相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahim GMS (2005) Holocene sediments of Tamaki Estuary: characterisation and impact of recent human activity on an urban estuary in Auckland, New Zealand. PhD thesis, Univ of Auckland, Auckland, New Zealand

  • Aftabi A, Atapour H (2010) Alteration geochemistry of volcanic rocks around Sarcheshmeh porphyry copper deposits, Rafsanjan, Kerman, Iran: implication for regional exploration. Resource Geol 61(1):76–90

    Article  Google Scholar 

  • Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geochem Explor 93:47–65

    Article  Google Scholar 

  • Balistrieri LS, Seal IIRR, Piatak NM, Paul B (2007) Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Appl Geochem 22:930–952

    Article  Google Scholar 

  • Berger BR, Ayuso RA, Wynn JC, Seal RR (2008) Preliminary model of porphyry copper deposits. USGS Open-File Report 2008–1321, Washington DC, USA

    Google Scholar 

  • Beus AA, Grigorian SV (1977) Geochemical exploration methods for mineral deposits. Applied Publ Ltd, Wilmette

    Google Scholar 

  • Brookins DG (1988) Eh-pH diagrams for geochemistry. Springer, Berlin

    Book  Google Scholar 

  • Chaffee MA (1994) Data for four drill holes, Mount Margaret copper-molybdenum-gold deposit, Skamania County, Washington. USGS Open-File Report 94–2A & B (diskette), Washington DC, USA

    Google Scholar 

  • Chakrabarti CL, Lu Y, Back MH, Grégoire DC, Schroeder WH (1994) Kinetic studies of metal speciation using chelex cation exchange resin: applications to cadmium, copper and lead speciation in river water and snow. Environ Sci Technol 28:1957–1967

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Cox LJ, Chaffee MA, Cox DP, Klein DP (1995) Porphyry Cu deposits. USGS Open-File Report 95–831, Washington DC, USA, pp 75–89

    Google Scholar 

  • Dercz G, Oleszak D, Prusik K, Pająk L (2008) Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phases. Rev Adv Mater Sci 18:764–768

    Google Scholar 

  • Dickinson WW, Dunbar GB, McLeod H (1996) Heavy metal history from cores in Wellington Harbour, New Zealand. Environ Geol 27:59–69

    Google Scholar 

  • Dimitrijevic MD (1973) Geology of Kerman region: Institute for geological and mining exploration and investigation of nuclear and other mineral raw material. Iran Geol Survey Rept Yu/52, Beograd–Yugoslavia

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68

    Article  Google Scholar 

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:2–55

    Article  Google Scholar 

  • Dollar NL, Souch CJ, Filippelli GM, Mastalerz M (2001) Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore. Environ Sci Technol 35:3608–3615

    Article  Google Scholar 

  • Doyle J, Solberg T, Tiefenthaler J, O’Brien G, Behnke HF, Poulson HD, Ela JP, Willett SD (2003) Consensus-based sediment quality guidelines; recommendations for use and application interim guidance. Wisconsin Dept of Natural Resources, Wisconsin

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling hydrous ferric oxides. Wiley, New York

    Google Scholar 

  • Eby GN (2004) Principles of environmental geochemistry. Brooks/Cole-Thomson Learning, Pacific Grove

    Google Scholar 

  • Ellis R (1991) Sarcheshmeh. Mining Mag October, pp 192–196

  • Etminan E (1977) Le porphyre cuprifere de Sarcheshmeh (Iran): Role des phases fluides dans les mechanismes d’alteration et de mineralization GSI, Rept No 48

  • Fanfani L, Zuddas P, Chessa A (1997) Heavy metals speciation analysis as a tool for studying mine tailings weathering. J Geochem Explor 58:241–248

    Article  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857

    Article  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2004) Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Sci Total Environ 330:115–129

    Article  Google Scholar 

  • Förstner U, Ahlf W, Calmano W, Kersten M (1990) Sediment criteria development—contributions from environmental geochemistry to water quality management. In: Heling D, Rothe P, Förstner U, Stoffers P (eds) Sediments and environmental geochemistry: selected aspects and case studies. Springer, Berlin, pp 311–338

    Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21:451–466

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hämmann M, Desaules A (2003) Sampling and sample pre-treatment in soil pollutant monitoring. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne

    Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219

    Article  Google Scholar 

  • Hezarkhani H (2006) Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions. J Asian Earth Sci 28:409–422

    Article  Google Scholar 

  • Hlavay J, Prohaska T, Weisz M, Wenzel WW, Stingeder GJ (2004) Determination of trace elements bound to soils and sediment fractions. IUPAC Tech Rep Pure Appl Chem 76(415):442

    Google Scholar 

  • Hornung H, Karm MD, Cohen Y (1989) Trace metal distribution on sediments and benthic fauna of Haifa Bay, Israel. Estuar Coast Shelf Sci 29:43–56

    Article  Google Scholar 

  • Khorasanipour M, Aftabi A (2010) Environmental geochemistry of toxic heavy metals in soils around Sarcheshmeh porphyry copper mine smelter plant, Rafsanjan, Kerman, Iran. Environ Earth Sci 62:449–465

    Article  Google Scholar 

  • Khorasanipour M, Moore F, Naseh R (2011a) Lime Treatment of Mine Drainage at the Sarcheshmeh Porphyry Copper Mine, Iran. Mine Water Environ 30:216–230

    Article  Google Scholar 

  • Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2011b) Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine, SE Iran. Appl Geochem 26:714–730

    Article  Google Scholar 

  • Long ER, Morgan LG (1991) The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. National Oceanic and Atmospheric Admin Technical Memorandum NOS OMA 52, Seattle, WA, USA

  • Lopez-Sanchez JF, Rubio R, Samitier C, Rauret G (1996) Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain). Water Res 30(1):153–159

    Article  Google Scholar 

  • Lottermoser BG (2003) Mine waste: characterization, treatment and environmental impacts. Springer, Berlin

    Google Scholar 

  • Lowell JD, Guilbert U (1970) Lateral and vertical alteration mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • MacDonald DD, Dipinto LM, Field J, Ingersoll CG, Long ER (2000a) Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls. Environ Toxicol Chem 19:403–1413

    Article  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000b) Development and evaluation of consensus based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry, 4th edn. Wiley, New York

    Google Scholar 

  • Müller G (1969) Index of geoaccumulation in the sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Narwal RP, Singh BR, Salbu B (1999) Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun Soil Sci Plant Anal 30:1209–1230

    Article  Google Scholar 

  • Owor M, Hartwig T, Muwanga A, Zachmann D, Pohl W (2006) Impact of tailings from the Kilembe copper mining district on Lake George, Uganda. Environ Geol 51:1065–1075

    Google Scholar 

  • Patrick WH, Verloo M (1998) Distribution of soluble heavy metals between ionic and complexed forms in a saturated sediment as affected by pH and redox conditions. Water Sci Technol 37:165–171

    Google Scholar 

  • Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanetta ML, Oro AA (1985) Heavy metal speciation in the sediments of northern Adriatic Sea, a new approach for environmental toxicity determination. In: Lakkas TD (ed) Heavy metals in the environment, vol 2. CEP Consultants, Edinburgh

    Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MJ (eds) Environmental geochemistry of mineral deposits part A. Processes, techniques and health issues, Rev Econ Geol, vol. 6A, pp 71–116

  • Quevauviller P, Rauret G, Muntau H, Ure AM, Rubio R, López-Sanchez JF, Fiedler HD, Griepink B (1994) Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius J Anal Chem 349:808–814

    Article  Google Scholar 

  • Ranville JF, Schmiermund (1999) General aspects of aquatic colloids in environmental geochemistry. In: The environmental geochemistry of mineral deposits: part A: processes, techniques, and health issues. Rev Econ Geol, vol. 6A, pp 183–199

  • Ribet I, Ptacek CJ, Blowes DW, Jambor JL (1995) The potential for metal release by reductive dissolution of weathered mine tailings. J Contam Hydrol 17(3):239–273

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Treatise on geochemistry, vol 3. Elsevier Ltd, Oxford, pp 1–64

    Book  Google Scholar 

  • Salbu B, Krekling T, Oughton DH (1998) Characterization of radioactive particles in the environment. Analyst 123:843–849

    Article  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin

    Book  Google Scholar 

  • Shahabpour J, Kramers JD (1987) Lead isotope data from the Sarcheshmeh porphyry copper deposit, Iran. Miner Depos 22:275–281

    Article  Google Scholar 

  • Shen J, Liu E, Zhu Y, Hu S, Qu W (2007) Distribution and chemical fractionation of heavy metals in recent sediments from Lake Taihu, China. Hydrobiologia 581:141–150

    Article  Google Scholar 

  • Shotyk W, Blaser P, Grunig A, Cheburkin AK (2000) A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peat cores from bogs: Pb in eight Swiss peat bog profiles. Sci Total Environ 249:281–295

    Article  Google Scholar 

  • Singer DA, Berger VI, Moring BC (2008) Porphyry copper deposits of the world—database and grade and tonnage models. USGS Open-File Report 2008–1155, Washington DC, USA

    Google Scholar 

  • Singh M, Müller G, Singh IB (2002) Heavy metals in freshly deposited stream sediments of rivers associated with urbanization of the Ganga Plain, India. Water Air Soil Pollut 141:35–54

    Article  Google Scholar 

  • Skousen J, Politan K, Hilton T, Meek A (1990) Acid mine drainage treatment systems: chemicals and coasts. Green Lands 20(4):31–37

    Google Scholar 

  • Spears DA, Tarazona MRM, Lee S (1994) Pyrite in U.K. coals: its environmental significance. Fuel 37:1051–1055

    Article  Google Scholar 

  • Taylor SR (1964) The abundance of chemical elements in the continental crust—a new table. Geochim Cosmochim Acta 28:1273–1285

    Article  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffery DW (1980) Problems in the assessment of heavy metal levels in estuaries and formation of a pollution index. Helgol Mar Res 33:566–575

    Google Scholar 

  • Turekian KK, Wedepohl DH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192

    Article  Google Scholar 

  • US EPA (1992) Supplemental guidance to RAGS: calculating the concentration term. Publication 9285.7-081, May 1992

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge Earth Science Series, Cambridge Univ Press, Cambridge

    Google Scholar 

  • Violante A, Huang PM, Gadd GM (eds) (2007) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken

    Google Scholar 

  • Waterman GC, Hamilton RL (1975) The Sar-Cheshmeh porphyry copper, deposit. Econ Geol 70:568–576

    Article  Google Scholar 

  • Webster JG, Swedlund PJ, Webster KS (1998) Trace metal adsorption onto an acid mine drainage iron (III) oxyhydroxy sulfate. Environ Sci Technol 32:1361–1368

    Article  Google Scholar 

  • Weisz M, Polyak K, Hlavay J (2000) Fractionation of elements in sediment samples collected in rivers and harbors at Lake Balaton and its catchment area. Microchem J 67:207–217

    Article  Google Scholar 

  • Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266:195–202

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the cooperation of the Research and Development Division of the Sarcheshmeh Copper Complex for financial support and access to sampling and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Khorasanipour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10230_2012_198_MOESM1_ESM.doc

Supplementary Table S-1: 1- Results obtained from 9-operationally defined chemical fractionation methods (F1, water-soluble; F2, exchangeable; F3, acido-soluble or carbonate; F4, manganese oxide; F5, amorphous Fe oxide; F6, crystalline Fe oxide; F7, oxidizable; F8, primary sulfide; and F9, residual). (DOC 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorasanipour, M., Tangestani, M.H., Naseh, R. et al. Chemical Fractionation and Contamination Intensity of Trace Elements in Stream Sediments at the Sarcheshmeh Porphyry Copper Mine, SE Iran. Mine Water Environ 31, 199–213 (2012). https://doi.org/10.1007/s10230-012-0198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-012-0198-0

Keywords

Navigation