Skip to main content
Log in

Impact of Oil Shale Mining on Flow Regimes in Northeast Estonia

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

In addition to the well-documented effects of aquatic pollution, mining operations can have major impacts on hydrological pathways and flow regime in downstream catchments. This paper documents long term (1923–2008) changes in surface drainage areas and runoff characteristics in two small to medium (100–1,000 km2) rivers draining part of the Ordovician oil shale field of north east Estonia. Through coupling analysis of flow regime with mining records (discharge rates and workings locations) the impact of expansion in oil shale mining through the mid to late twentieth century on downstream flow is assessed. During phases of intense mining, winter and summer baseflow is between 53 and 72% higher than long term average baseflow in the Purtse catchment and between 66 and 92% higher in the smaller Pühajõgi catchment where the volumetric significance of mine discharges is greater. The contribution of pumped deeper groundwater to surface run-off is shown to control the largest increases in mean annual run-off. While flow augmentation is the most common hydrological impact of the mining operations, phases of dehydration are also recognised in streams where cross-watershed transfers reduce the effective catchment area. Implications of the changed flow regime on river quality and management options are considered.

摘要

除了造成已被广泛研究的水污染外,采矿活动还能对流域下游汇流路径和水文情势产生重要影响。文章研究了两条流经爱沙尼亚东北部奥陶系油页岩采矿区的小型~中型 (100 ~ 1,000 km2) 河流的汇水面积和径流量长期变化(1923–2008年)。通过综合分析流域水文情势与采矿活动(采矿位置与矿井排水量)的关系,文章评价了20世纪中、后期日益扩大的油页岩开采对流域下游径流量的影响。在油页岩强烈开采期间, Purtse 流域的冬季和夏季基流比该流域多年平均基流高 53–72%, 更小型的Pühajõgi流域的基流较其多年平均基流高 66–92%; 该结果表明,矿井排水对小型流域径流量的影响更大。另外, 从地下抽取的深层地下水对地表径流量的增长作用决定了流域年平均径流量的最大增幅。虽然采矿对流域水文过程的普遍作用表现为径流增长, 但河川径流在枯水期的跨流域转移会降低流域有效面积。矿区水文情势的变化对河流质量及管理措施也产生影响。.

Resumen

Además de los bien documentados efectos de polución acuática, las operaciones mineras tienen un gran efecto sobre las corrientes hidrológicas y el régimen de flujos en las áreas hidrológicamente conectadas, aguas abajo. Este trabajo documenta los cambios a largo plazo (1923–2008) que ocurrieron en las áreas superficiales de drenaje y los flujos de dos ríos pequeños o medianos (100–1,000 km2) drenando a través del campo Ordovician de petróleo de origen bituminoso del noreste de Estonia. Se relevó el impacto de la expansión de la actividad minera en el área desde mediados hasta finales del siglo 20, a través del análisis conjunto de los regímenes de flujo y de los datos mineros (velocidades de descarga y lugares con actividad minera). Durante las fases de la minería intensiva, el flujo en invierno y verano es entre 53–72% mayor que el promedio en el área Purtse y entre 66–92%% mayor en el área más pequeña de Pühajõgi donde la influencia volumétrica de las descargas mineras es mayor. La contribución de aguas subterráneas bombeadas a la superficie controla los mayores incrementos en el flujo medio anual. Aunque el impacto hidrológico más común que provocan las operaciones mineras sea el incremento del flujo, también pueden observarse fases de sequías en aquellos cursos de agua desfavorecidos por la transferencia de los desagües hacia otros cursos reduciendo el área hidrológica efectiva. Se analizan también las implicancias en el cambio del régimen de flujo sobre la calidad del río y las opciones para su control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes TM (2000) Treatment of the gravity minewater discharge at Deerplay Mine, Burnley, UK. In: Proceedings 7th international mine water association congress, Ustron, Poland, vol 2, pp 344–351

  • Croton JT, Reed AJ (2007) Hydrology and bauxite mining on the Darling Plateau. Restor Ecol 15:S40–S47

    Article  Google Scholar 

  • Czaja S (2005) Changes in river discharge structure and regime in mining-industrial-urban areas. Reg Environ Change 5:18–26

    Article  Google Scholar 

  • Erg K (2003) Sulphate balance of lakes and shallow groundwater in the Vasavere buried valley, Northeast Estonia. Oil Shale 20(4):477–489

    Google Scholar 

  • Erg K, Pastarus J-R (2008) Hydrogeologic impacts in the Estonian oil shale deposit. Int J Min Reclam Environ 22(4):300–310

    Article  Google Scholar 

  • EU (2000) The EU water framework directive. OJ L. doi:2000L0060-EN-25.06.2009-004.001-1

  • Ferrari JR, Lookingbill TR, McCormick B, Townsend PA, Eshleman KN (2009) Surface mining and reclamation effects on flood response of watersheds in the central Appalachia Plateau region. Water Resour Res 45:W04407

    Article  Google Scholar 

  • Finlinson B, Groves A (1994) Hydrological effects of mineral workings: new guidelines to safeguard nature conservation areas. Quarry Manag 21:21–26

    Google Scholar 

  • Golf W (1968) Contribution concerning the flow rates of rivers transporting drain waters of open-cast mines. In: Proceedings of hydrological aspects of the utilization of water, international association of scientific hydrology (IASH), publ 76, pp 306–316

  • Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York City

    Google Scholar 

  • Hester RE, Harrison RM (1994) Mining and its environmental impact. Royal Society of Chemistry, Cambridge, UK

    Book  Google Scholar 

  • Järvekülg A (2001) Estonian Rivers. Institute of Agricultural and Environmental Sciences, University of Life Sciences, Tartu, Estonia (in Estonian, summary in English)

  • Kattai V, Saarde T, Savitski L (2000) Estonian oil shale: geology, resources, mining conditions. Geol Surv of Estonia, Tallinn, Estonia (in Estonian)

  • Kiristaja R, Rannus M (2008) Kohtla mine. In: Varb N, Tambet Ü (eds) 90 years of oil shale mining in Estonia, Technology and People. Geotrail KS Ltd, Tallinn, Estonia, pp 110–133 (in Estonian)

  • Lind H (2010) Groundwater flow model of oil shale mining area. Oil Shale 27(3):258–273

    Article  Google Scholar 

  • Mander Ü (1994) Changes of landscape structure in Estonia during the Soviet period. GeoJournal 33(1):45–54

    Article  Google Scholar 

  • Mayes WM, Large ARG, Younger PL (2005) The impact of pumped groundwater from a de-watered magnesian limestone quarry on an adjacent wetland. Environ Pollut 138:444–455

    Article  Google Scholar 

  • Mayes WM, Potter HAB, Jarvis AP (2010) Inventory of aquatic contaminant flux arising from historical non-coal mining in England and Wales. Sci Total Environ 408:3576–3583

    Article  Google Scholar 

  • Negley TL, Eshleman KN (2006) Comparison of stormflow responses of surface-mined and forested watersheds in the Appalachian Mountains, USA. Hydrol Process 20:3467–3483

    Article  Google Scholar 

  • Pae T, Luud A, Sepp M (2005) Artificial mountains in north-east Estonia: monumental dumps of ash and semi-coke. Oil Shale 22:333–343

    Google Scholar 

  • Parakhonski E (1983) Conditions of formation of wastewaters discharged from the oil shale mines and open pits. Tallinn, Estonia (in Russian)

    Google Scholar 

  • Pärn J, Mander Ü (2007) Landscape factors of nutrient transport in temperate agricultural catchments. WIT Trans Ecol Environ 104:411–423

    Google Scholar 

  • PIRAMID Consortium (2003) Engineering guidelines for the passive remediation of acidic and/or metalliferous mine drainage and similar wastewaters. European Commission 5th Framework RTD Project no. EVK1-CT-1999-000021, Passive in situ remediation of acidic mine/industrial drainage (PIRAMID), University of Newcastle upon Tyne, Newcastle upon Tyne, UK

  • Rätsep A, Liblik V (2000) Technogenic water flows generated by oil shale mining: impact on Purtse catchment rivers. Oil Shale 17(2):95–112

    Google Scholar 

  • Rätsep A, Liblik V (2001) The influence of polluted water flows on hydrological and hydrochemical conditions of Purtse catchment rivers, NE Estonia. Nord Hydrol 32(3):215–226

    Google Scholar 

  • Rätsep A, Liblik V (2004) Impact of oil shale mining and mine closures on hydrological conditions of north-east Estonian rivers. Oil Shale 21(2):137–148

    Google Scholar 

  • Reinsalu E (2008) Introduction In: Varb N, Tambet Ü (eds) 90 years of oil shale mining in Estonia, technology and people. Geotrail KS Ltd, Tallinn, Estonia, pp 6–10 (in Estonian)

  • Reinsalu E, Valgma I, Lind H, Sokman K (2006) Technogenic water in closed oil shale mines. Oil Shale 23(1):15–28

    Google Scholar 

  • Rochefort L, Lode E (2006) Restoration of degraded boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 381–424

    Chapter  Google Scholar 

  • Selberg A, Viik M, Pall P, Tenno T (2009) Environmental impact of closing of oil shale mines on river water quality in north-eastern Estonia. Oil Shale 26(2):69–183

    Article  Google Scholar 

  • Shaw EM (1994) Hydrology in practice, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Shaw EM, Beven KJ, Chappell NA, Lamb R (2010) Hydrology in practice, 4th edn. Taylor & Francis Ltd, London

    Google Scholar 

  • Tamm V, Tamm T (1997) Determining evapotranspiration in the conditions of Estonia. Water Manag II 191:59–69

    Google Scholar 

  • Tamm T, Timmusk T (1997) Investigation of water balance and nutrient cycling at the Reola study field: a case study. Water Manag II 191:70–80

    Google Scholar 

  • Tiwary RK (2001) Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut 132:185–199

    Article  Google Scholar 

  • Vaht R (2009) Impact of oil shale mining on hydrological conditions of the River Purtse tributaries. In: Mander Ü, Uuemaa E, Pae T (eds) 90 years of estonian geography: selected studies. Tartu University Press, Tartu, Estonia, pp 415–428 (in Estonian, summary in English)

  • Vaht R, Rätsep A (2009) Impact of oil shale mine water on hydrology and runoff of a small river, the Pühajõgi River case study. Oil Shale 26(1):84–93

    Article  Google Scholar 

  • Watson I, Burnett AD (1995) Hydrology, an environmental approach. Lewis Publ, Boca Raton

    Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer Academic Publ, Dordrecht

    Google Scholar 

  • Younger PL, Jenkins DA, Rees SB, Robinson J, Jarvis AP, Ralph J, Johnston DN, Coulton RH (2004) Mine waters in wales: pollution, risk management and remediation. In: Nichol D, Bassett MG, Deisler VK (eds) Urban geology in wales, National Museums & Galleries of Wales, Cardiff, UK, pp 138–154

Download references

Acknowledgments

The present study is financed by the Estonian Science Foundation Grant No. 7510, Target Funding Projects SF1090050s07 of the Ministry of Education and Science of Estonia. We thank Prof. Ülo Mander, for his guidance, and Eero Piirisalu and Mait Sepp, who helped with the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riina Vaht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaht, R., Mayes, W. & Luud, A. Impact of Oil Shale Mining on Flow Regimes in Northeast Estonia. Mine Water Environ 30, 284–295 (2011). https://doi.org/10.1007/s10230-011-0162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-011-0162-4

Keywords

Navigation