The Occurrence and Quality of Mine Water in the Upper Silesian Coal Basin, Poland

  • Ewa Janson
  • Grzegorz Gzyl
  • David Banks
Technical Communication


The mining of coal in the Upper Silesian Coal Basin and the relatively recent closure of many of these mines during the past two to three decades has affected surface and underground water quality. Regulations in Poland are designed to protect active mining operations rather than water quality and water environment. Dewatering mechanisms in abandoned coal mines and characteristics of water pumped (quality, temperature) are discussed.


Abandoned mines Aquifer dewatering Geothermal resource Mine closure 


  1. Banks D (2004) Geochemical processes controlling minewater pollution. In: Proceedings of 2nd IMAGE-TRAIN Advanced Study Course, Pécs, Hungary, Conf papers CP-035, Umweltbundesamt, Vienna, Austria, pp 17–44Google Scholar
  2. Banks D (2006) Assessment of the impact of the mine flooding process on ground water quality: chemical and mineralogical analysis of rock samples recovered from Janina Mine; Hydrochemical modelling of mine water evolution (Draft Rev B, dated 30/5/06), Report of the Głowny Instytut Górnictwa, KatowiceGoogle Scholar
  3. Banks D, Skarphagen H, Wiltshire R, Jessop C (2004) Heat pumps as a tool for energy recovery from mining wastes. In: Gieré R, Stille P (eds) Energy, waste and the environment: a geochemical perspective. Geological Society (London) Special Publications 236:99–513Google Scholar
  4. Barnes I, Clarke FE (1964) Geochemistry of ground water in mine drainage problems. USGS professional paper 473-A, p 6Google Scholar
  5. Buła Z, Kotas A (eds) (1994) Geological Atlas of the Upper Silesian Coal Basin 1:100, 000; structural geological map of the coal-bearing Carboniferous. Państwowy Instytut Geologiczny, WarszawaGoogle Scholar
  6. Burke SP, Potter HAB, Jarvis A (2005) Ground water rebound in the South Yorkshire Coalfield: a review of initial modelling. In: Loredo J, Pendás F (eds), Proceedings of 9th International Mine Water Congress, Oviedo, Spain, pp 217–222Google Scholar
  7. Czermińska B, Głąb J, Szymańska-Kubicka L (2001) Raport o stanie środowiska w województwie śląskim w latach 1999–2000. Biblioteka Monitoringu Środowiska, Katowice, Poland, p 331Google Scholar
  8. Demollin-Schneiders E (2008) Mijnwaterproject Heerlen: lessons learned, things to do. In: Proceedings, Conference on Minewater ‘08, Aachen (Germany) and Heerlen (Netherlands), accessed at:
  9. Eckart M, Klinger C (2006) Assessment of the impact of the mine flooding process on ground water quality: coupled ‘Mine-ground water model’ hydrodynamical and hydrochemical model-BOXMODEL. Report of the experts from DMT GmbH, Essen, Germany for Głowny Instytut Górnictwa, KatowiceGoogle Scholar
  10. Gandy CJ, Younger PL (2007) Predicting ground water rebound in the South Yorkshire coalfield, UK. Mine Water Environ 26:70–78CrossRefGoogle Scholar
  11. Gientka M (2008) Zasoby i wydobycie węgla kamiennego w Polsce w latach 1989–2007 [Hard coal resources and production in Poland in the years 1989–2007]. Polish Geological Institute, accessed at:
  12. Gudek P (2006) Simulation of dewatering deep coal mines in Poland and feasibility of recovering geothermal energy. MSc Dissertation, School of Earth and Environment, University of Leeds, UKGoogle Scholar
  13. Gzyl G, Banks D (2007) Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland. J Contam Hydrol 92:66–86CrossRefGoogle Scholar
  14. Hedin R, Nairn R, Kleinmann R (1994) Passive Treatment of Coal Mine Drainage. USBM IC 9389, US Dept of the Interior, Washington, DC, USA, p 35Google Scholar
  15. Jaros J (1975) Zarys dziejów górnictwa węglowego. PWN Warszawa-Kraków, PolandGoogle Scholar
  16. Jarvis AP, Younger PL (1999) Design, construction and performance of a full-scale compost wetland for mine-spoil drainage treatment at Quaking Houses. J Chart Inst Water E 13:313–318CrossRefGoogle Scholar
  17. Jarvis AP, Younger PL (2001) Passive treatment of ferruginous mine waters using high surface area media. Water Res 35:3643–3648CrossRefGoogle Scholar
  18. Jureczka J, Galos K (2007) Niektóre aspekty ponownego zagospodarowania wybranych złóż zlikwidowanych kopalń węgla kamiennego w Górnośląskim Zagłębiu Węglowym [Some aspects of secondary development of abandoned coal mines of the Upper Silesian Coal Basin—in Polish]. Polityka Energetyczna 10(2):645–661Google Scholar
  19. Karwasiecka M (2001) The geothermal field of the Upper Silesian Coal Basin. In: Proceedings, Conference on Geothermal Energy in Underground Mines, Ustroń, Poland, pp 41–49Google Scholar
  20. Kortas L, Younger PL (2007) Using the GRAM model to reconstruct the important factors in historic ground water rebound in part of the Durham Coalfield, UK. Mine Water Environ 26:60–69CrossRefGoogle Scholar
  21. Kotas A (1985) Uwagi o ewolucji strukturalnej Górnośląskiego Zagłębia Węglowego. Mat Konf nt: Tektonika Górnośląskiego Zagłębia Węglowego. Sosnowiec, Poland, pp 17–46Google Scholar
  22. Kropka J, Janson E, Czapnik A (2005) Changes of hydrogeological conditions in the area of liquidated coal mines in the north—eastern part of Upper Silesia Coal Basin (southern Poland). In: Loredo J, Pendás F (eds) Proceedings of 9th International Mine Water Congress, Oviedo, Spain, pp 209–215Google Scholar
  23. Levi P (1996) Se questo è un uomo [If this is a man]. Touchstone, p 175Google Scholar
  24. Małolepszy Z, Demollin-Schneiders E, Bowers D (2005) Potential use of geothermal mine waters in Europe. In: Proceedings of World Geothermal Congress, Antalya, Turkey, p 3.
  25. Neymeyer A, Williams RT, Younger PL (2007) Migration of polluted mine water in a public supply aquifer. Q J Eng Geol Hydrogeol 40:75–84CrossRefGoogle Scholar
  26. Państwowy Instytut Geologiczny (2005) Mapy rozmieszczenia złóż węgla kamiennego Górnośląskiego Zagłębia Węglowego wg stanu na 31.XII.2005 [Status map of hard coal mines of the Upper Silesian Coal Basin—Polish], scale 1:200000. Państwowy Instytut Geologiczny, PolandGoogle Scholar
  27. Perlick A (1943) Landeskunde des oberschlesischen Industriegebietes. Wrocław, Poland, pp 171–172Google Scholar
  28. PIRAMID (2003) Passive in situ remediation of acidic mine/industrial drainage (PIRAMID). Final Report, The PIRAMID Consortium,
  29. Razowska L (2001) Changes of ground water chemistry caused by the flooding of iron mines (Czestochowa Region, Southern Poland). J Hydrol 244:17–32CrossRefGoogle Scholar
  30. Rose AW, Cravotta CA (1998) Geochemistry of coal mine drainage. In: Brady KBC, Smith MW, Schueck J (eds) Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania. PA DEP, Harrisburg, pp 1.1–1.22Google Scholar
  31. Różkowski A (2001) Środowisko hydrogeologiczne wód geotermalnych w utworach karbonu produktywnego Górnośląskiego Zagłębia Węglowego [Geological Environment of Geothermal Waters in the Productive Carboniferous Formation in the Upper Silesian Coal Basin (USCB). In: Proceedings, Conference on Geothermal Energy in Underground Mines, Ustroń, Poland, pp 51–62Google Scholar
  32. Różkowski A (2004) Środowisko hydrogeochemiczne Górnośląskiego Zagłębia Węglowego. Wyd Uniw Śląskiego, Katowice, p 175Google Scholar
  33. Różkowski A (2006) Czynniki kształtujące przeobrażenia środowiska hydrochemicznego strefy wymiany w utworach karbonu w północno—wschodniej części Górnośląskiego Zagłębia Węglowego (GZW). Mat Konf Hydrogeochemia ‘06, Aktualne problemy hydrogeochemii. Sosnowiec, Złoty Potok, pp 95–98Google Scholar
  34. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167(3921):1121–1123CrossRefGoogle Scholar
  35. Solik-Heliasz E, Małolepszy Z (2001) Possibilities of utilization of geothermal energy from mine waters in the Upper Silesian Coal Basin. Proc, Conf Geothermal energy in underground mines, Ustroń, PolandGoogle Scholar
  36. Szejnert M. (2007) Czarny ogród, Wyd Znak, Kraków, 547 ppGoogle Scholar
  37. Usher BH, Vermeulen PD (2003–2006) Monitoring reports for Irrigation Project: Syferfontein Colliery, Kleinkopje Colliery and New Vaal Colliery. Confidential report for University of Pretoria, South AfricaGoogle Scholar
  38. Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25:1–14CrossRefGoogle Scholar
  39. Watzlaf GR, Schroeder KT, Kleinmann RLP, Kairies CL, Nairn RW (2004) The passive treatment of coal mine drainage. NETL Report DOE/NETL-2004/1202, p 72Google Scholar
  40. Włodarska T (1957) Początki najstarszej kopalni węgla na Górnym Śląsku oraz pierwszy strajk jej załogi w 1772 roku. Sobótka 1957/4: 551Google Scholar
  41. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution remediation. Kluwer, Dordrecht, p 442Google Scholar
  42. Zaleski W (1967) Dzieje górnictwa i hutnictwa na Górnym Śląsku do roku 1806. Madryt, p 190Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Centralny Zakład Odwadniania Kopalń (CZOK)CzeladźPoland
  2. 2.Department of Geology and GeophysicsGłówny Instytut Górnictwa (Central Mining Institute)KatowicePoland
  3. 3.Holymoor Consultancy LtdChesterfieldUK

Personalised recommendations