Skip to main content
Log in

Physico-chemical gradients and meromictic stratification in Cueva de la Mora and other acidic pit lakes of the Iberian Pyrite Belt

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A marked vertical trend of increasing temperature and dissolved metal concentrations is observed in the monimolimnia of some meromictic pit lakes of the Iberian Pyrite Belt (IPB) in SW Spain. Temperature differences between the chemocline and the pit lake bottom can be as high as 15°C (e.g. Herrerías), and the respective concentration of some metals (e.g. Fe) and metalloids (e.g. As) can increase by several orders of magnitude (e.g. Cueva de la Mora). The redox conditions also change drastically from the upper and oxygenated mixolimnion (strongly oxidizing) to the lower and anoxic monimolimnion (moderately reducing). Processes such as the inflow of metal–sulphate laden ground water from flooded shafts and galleries, and other factors such as the pit geometry or the relative depth of the lakes, must be considered to account for the observed stratification pattern. The vertical profiles of physico-chemical parameters and water chemistry obtained in Cueva de la Mora and other meromictic pit lakes of the IPB are also compatible with a reactive bottom in which several geochemical and microbial reactions (including reductive dissolution of Fe3+ minerals, bacterial reduction of Fe3+ and SO4 2− in pore waters within the sediments, and decomposition of organic matter) could be taking place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguilera A, Manrubia SC, Gómez F, Rodríguez N, Amils R (2006) Eukaryotic community distribution and its relationship to water physicochemical parameters in an extremely acidic environment, Río Tinto (Southwestern Spain). Appl Environ Microb 72–8:5325–5330

    Article  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance, Rev Mineral Geochem, vol 40. pp 351–403

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  Google Scholar 

  • Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46:RG2005. doi:10.1029/2006RG000210

  • Braungardt CB, Achterberg EP, Elbaz-Poulichet F, Morley NH (2003) Metal geochemistry in a mine-polluted estuarine system in Spain. Appl Geochem 18:1757–1771

    Article  Google Scholar 

  • Cameron D, Willett M, Hammer L (2006) Distribution of organic carbon in the Berkeley pit lake, Butte, Montana. Mine Water Environ 25(2):93–99

    Article  Google Scholar 

  • Castendyk D, Webster-Brown J (2007) Sensitivity analyses in pit lake prediction, Martha Mine, New Zealand 1: relationship between turnover and input water density. Chem Geol 244:56–73

    Article  Google Scholar 

  • Davis A, Ashenberg D (1989) The aqueous geochemistry of the Berkeley Pit, Butte, Montana, USA. Appl Geochem 44:23–36

    Article  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, Inc., NY, p 768

    Google Scholar 

  • Fedorov KN (1988) Layer thicknesses and effective diffusivities in “diffusive” thermohaline convection in the ocean. In: Nihoul JCL, Jamart BM (eds) Small-scale turbulence and mixing in the ocean. Elsevier, Amsterdam, pp 471–479

    Chapter  Google Scholar 

  • Friese K (2004) Depth distribution of heavy metals in lake sediments from lignite mine pit lakes of Lusatia (Germany). Stud Quaternaria 21:197–205

    Google Scholar 

  • Gammons CH, Duaime TE (2006) Long term changes in the limnology and geochemistry of the Berkeley pit lake, Butte, Montana. Mine Water Environ 25:76–85

    Article  Google Scholar 

  • Gammons CH, Metesh JJ, Snyder DM (2006) A survey of the geochemistry of flooded mine shaft water in Butte, Montana. Mine Water Environ 25:100–107

    Article  Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto river. Appl Environ Microbiol 6:4853–4865

    Article  Google Scholar 

  • Herzsprung P, Friese K, Packroff G, Schimmele M, Wendt-Potthoff K, Winkler M (1998) Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes. Acta Hydrochim Hydrobiol 26:253–262

    Article  Google Scholar 

  • IGME (2008) Cortas inundadas de la Faja Pirítica: Inventario e hidroquímica. Memoria Final de Proyecto, Instituto Geológico y Minero de España, Ministerio de Ciencia e Innovación, Madrid, Spain, 281 pp. http://www.igme.es

  • Kelley DE (1984) Effective diffusivities within oceanic thermohaline staircases. J Geophys Res 89:10484–10488

    Article  Google Scholar 

  • Kelley DE, Fernando HJS, Gargett AE, Tanny J, Özsoy E (2003) The diffusive regime of double-diffusive convection. Prog Oceanogr 56:461–481

    Article  Google Scholar 

  • López-Archilla AI, Amils R (1999) A comparative ecological study of two acidic rivers in southwestern Spain. Microbial Ecol 38:146–156

    Article  Google Scholar 

  • López-Archilla AI, Marín I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto river, Spain. Microbial Ecol 41(1):20–35

    Google Scholar 

  • Nordstrom DK (1982) The effect of sulphate on aluminum concentrations in natural waters: some stability relations in the system Al2O3–SO3–H2O at 298 K. Geochim Cosmochim Acta 46:681–692

    Article  Google Scholar 

  • Olías M, Nieto JM, Sarmiento AM, Cerón JC, Cánovas CR (2004) Seasonal water quality variations in a river affected by acid mine drainage: the Odiel river (south west Spain). Sci Total Environ 333:267–281

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS WRI 99–4259. Denver, CO, USA

  • Pellicori DA, Gammons CH, Poulson SR (2005) Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Appl Geochem 20:2116–2137

    Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197

    Article  Google Scholar 

  • Rowe FO, Sánchez-España J, Hallberg K, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9(7):1761–1771

    Article  Google Scholar 

  • Saez R, Pascual E, Toscano M, Almodovar G (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Miner Deposita 34:549–570

    Article  Google Scholar 

  • Sánchez-España J (2000) Mineralogy and geochemistry of the massive sulphide deposits of the northernmost sector of the Iberian Pyrite Belt (San Telmo-San Miguel-Peña del Hierro), Huelva, Spain. Ph.D. Thesis, University of the Basque Country (UPV-EHU), Bilbao, Spain, 301 pp

  • Sánchez-España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005a) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Article  Google Scholar 

  • Sánchez-España J, López-Pamo E, Santofimia E, Reyes J, Martín Rubí JA (2005b) The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Spain). Environ Geol 49:253–266

    Article  Google Scholar 

  • Sánchez-España J, López-Pamo E, Santofimia E, Reyes J, Martín Rubí JA (2006a) The impact of acid mine drainage on the water quality of the Odiel river (Huelva, Spain): evolution of precipitate mineralogy and aqueous geochemistry along the Concepción-Tintillo segment. Water Air Soil Poll 173:121–149

    Article  Google Scholar 

  • Sánchez-España J, López-Pamo E, Santofimia E, Reyes J, Martín Rubí JA (2006b) Trace metal sorption onto schwertmannite and hydrobasaluminite: examples from the Iberian Pyrite Belt. Aquat Geochem 12:269–298

    Article  Google Scholar 

  • Sánchez-España J, Santofimia E, González Toril E, San Martín-Úriz P, López Pamo E, Amils R (2007a) Physicochemical and microbiological stratification of a meromictic pit lake (San Telmo, IPB). In: Cidu R, Frau F (eds) Proceedings of the IMWA symposium. Cagliari, Sardinia, Italy, pp 447–451

  • Sánchez-España J, López-Pamo E, Santofimia E (2007b) Iron terraces in acid mine drainage systems: a discussion about the organic and inorganic factors involved in their formation through observations from the Tintillo acidic river (Riotinto mine, Huelva, Spain). Geosphere 3(3):133–151

    Article  Google Scholar 

  • Sánchez-España J, López-Pamo E, Santofimia E, Diez-Ercilla M (2008a) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287

    Article  Google Scholar 

  • Sánchez España FJ, López-Pamo E, Diez M, Santofimia E (2008b) Monimolimnetic gradients in meromictic pit lakes of the Iberian Pyrite Belt: physico-chemical description. In: Rapantova N, Hrkal Z (eds) Proceedings of the IMWA 2008 Congress. Karlovy Vary, Czeck Republic, pp 567–570

  • Schlesinger WH (ed) (2005) Biogeochemistry. Treatise on geochemistry, vol 8. Elsevier Science, Oxford, p 720

    Google Scholar 

  • Schmid M, Lorke A, Dinkel C, Tanyileke G, Wüest A (2004) Double-diffusive convection in Lake Nyos, Cameroon. Deep Sea Res Pt I 51:1097–1111

    Article  Google Scholar 

  • Spiteri C, Van Cappellen P, Regnier P (2008) Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochim Cosmochim Acta 72–14:3431–3445

    Article  Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulphide: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Article  Google Scholar 

  • Totsche O, Pöthig R, Uhlmann W, Büttcher H, Steinberg EW (2003) Buffering mechanisms in acidic mining lakes—a model-based analyses. Aquat Geochem 9:343–359

    Article  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge, p 367

    Google Scholar 

  • Turner JS (1978) Double-diffusive intrusions into a density gradient. J Geophys Res 83:2887–2901

    Article  Google Scholar 

  • Van Geen A, Boyle EA, Moore WS (1991) Trace metal enrichments in waters of the Gulf of Cádiz, Spain. Geochim Cosmochim Acta 55:2173–2191

    Article  Google Scholar 

  • Wetzel DB (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego, p. 1006

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr M.A. Aguilera (Centro de Astrobiología, CSIC-INTA), who carried out a preliminary identification of eukaryotic microorganisms of the Cueva de la Mora pit lake, and provided images taken by confocal microscopy. We sincerely thank Professor Christopher Gammons for his helpful scientific and editorial comments made on an earlier version of this manuscript. The suggestions and critical revisions made by Ted Eary and an anonymous reviewer are also greatly acknowledged. We finally thank Bob Kleinmann for his kind assistance provided during the editorial handling. This work has been supported with funds provided by IGME through several research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sánchez España.

Rights and permissions

Reprints and permissions

About this article

Cite this article

España, J.S., Pamo, E.L., Diez, M. et al. Physico-chemical gradients and meromictic stratification in Cueva de la Mora and other acidic pit lakes of the Iberian Pyrite Belt. Mine Water Environ 28, 15–29 (2009). https://doi.org/10.1007/s10230-008-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-008-0059-z

Keywords

Navigation