Skip to main content
Log in

The Geochemical Characterization of Mine Effluents from the Phosphorite Processing Plant of Kpémé (Southern Togo)

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Sedimentary phosphorites are being exploited in southern Togo. The ore is processed to high-grade purified commercial phosphorite by wet sieving, using water pumped directly from the sea. The resultant muddy tailings are dumped directly into the sea without any pretreatment. We have separated the solid and liquid phases of the muddy tailings and characterized their metal contents. Leaching tests were conducted with weak acid and saline water to evaluate the solubility and the potential bioavailability of various metals. The results show that the purification process leads to the enrichment of certain metals (Cr, Cu, Ni, V, Zn, Ba, Sr, Fe, and Al) in the tailings due to their association with the clay minerals, whereas Cd, Th, and U are enriched in the purified apatite-rich phase. The leaching tests showed that the solubility of metals generally increases when salinity increases or when pH decreases. Thus, the processing of phosphorites with sea water and the dumping of phosphorite tailings into the sea represent a serious potential risk for the marine ecosystem and for human health through the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abollino O, Aceto M, Malandrino M, Mentasti E, Sarzanini C, Petrella F (2002) Heavy metals in agricultural soil from Piedmont, Italy: distribution, speciation and chemometric data treatment. Chemosphere 49:545–557

    Article  Google Scholar 

  • Allan RJ (1995) Impact of mining activities on the terrestrial and aquatic environment. In: Salomons W, Förstner U, Mader P (eds) Heavy metals, problems and solutions. Springer, Berlin, p 412

    Google Scholar 

  • Altschuler ZS (1980) The geochemistry of trace elements in marine phosphorites, Part I: characteristic abundances and enrichment. In: Bentor YK (ed) Marine phosphorites. Soc of Economic Paleontologists and Mineralogists Special Publ 575–B, pp 19–30

  • Bopp F, Biggs RB (1981) Metals in estuarine sediments, factor analysis and its environmental significance. Science 214:441

    Article  Google Scholar 

  • Cook PJ (1972) Petrology and geochemistry of the phosphorite deposits of Northwest Queensland, Australia. Econ Geol 67:1193–1213

    Google Scholar 

  • Cook JM, Gardner MJ, Griffiths AH, Jessep MA, Ravenscroft JE, Yates R (1997) The comparability of sample digestion techniques for the determination of metals in sediments. Mar Pollut Bull 34:37–644

    Google Scholar 

  • Deheyn DD, Gendreau P, Baldwin R, Latz MI (2005) Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar Environ Res 60:1–33

    Article  Google Scholar 

  • DIN (Deutsche Industrie Normen) 38414–Teil 4 (1984) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Schlamm und Sediment Gruppe S. Beuth Verlag, Berlin, Germany

  • Garcı′a-Meza JV, Carrillo-Cha′vez A, Morton-Bermea O (2006) Sequential extractions on mine tailings samples after and before bioassays: implications on the speciation of metals during microbial re-colonization. Environ Geol 49:437–448

    Article  Google Scholar 

  • Gnandi K, Tobschall HJ (1999a) The pollution of marine sediments by trace elements in the coastal region of Togo caused by dumping of Cd rich phosphorite tailings into the sea. Environ Geol 38(1):13–24

    Article  Google Scholar 

  • Gnandi K, Tobschall HJ (1999b) Heavy metal release from phosphorite tailings into sea water: a simulated laboratory study. Sci Total Environ 236(1–3):181–190

    Article  Google Scholar 

  • Gnandi K, Tobschall HJ (2003) The distribution patterns of rare earth elements and uranium in Tertiary off/shore sedimentary phosphorite deposits of Hahotoé and Kpogamé (Togo). J Afr Earth Sci 37:1–10

    Article  Google Scholar 

  • Gnandi K, Tchangbedji G, Baba G, Killi K, Abbe K (2006) The impact of phosphate mine tailings on the bioaccumulation of heavy metals in marine fish and crustaceans from the coastal zone of Togo. Int J Mine Water Environ 25(1):56–62

    Article  Google Scholar 

  • Jarvis I, Burnett WC, Nathan J, Almbaydin FSM, Attia AKM, Castro LN, Flicoteau R, Hilmy ME, Husain V, Quitwanah AA, Serjani A, Zanin Y (1994) Phosphorite geochemistry: state-of-the-art and environmental concerns. Ecol Geol Helv 87(3):643–700

    Google Scholar 

  • Johnson AKC (1987) Le bassin côtier à phosphates du Togo: Thèse de doctorat, université de Dijon. France, unpubl 360 pp

    Google Scholar 

  • Katz A, Kaplan IR (1981) Heavy metal behavior in coastal sediments of southern California: a critical review and synthesis. Mar Chem 10:261–299

    Article  Google Scholar 

  • Killinc M, Cotillon P (1977) Le gisement d’Hahotoé/Kpogamé (Terciaire du Sud Togo), exemple de piège sédimentaire à sables phosphatés. Bull BRGM, Section II, 1, pp 43–63

  • Kunkel H (1990) Über die Cadmiumverteilung in den Phosphoritlagerstätten von Kpogamé/Hahotoé: Dissertation/Universtät/Erlangen, unpubl, 149 p

  • Luoma SN (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia 176:379–396

    Article  Google Scholar 

  • McArthur JM (1990) Fluorine-deficient apatite. Min Mag 54:508–510

    Article  Google Scholar 

  • McClellan GH (1980) Mineralogy of carbonate fluorapatite. J Geol Soc Lond 137:675–681

    Article  Google Scholar 

  • McClellan GH, Van Kauwenbergh SJ (1990) Mineralogy of sedimentary apatite. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development. Geol Soc Spec Publ, vol 52, pp 23–31

  • McConnell GH, Lehr JR (1969) Crystal chemical investigations of natural apatites. Am Mineral 54:1374–1391

    Google Scholar 

  • Morgan JJ, Stumm W (1995) Chemical processes in the environment, relevance of chemical speciation. In: Merian E (ed) Metals and their compounds in the environment. Verlag Chemie, Weinheim, pp 67–103

    Google Scholar 

  • Nathan Y (1984) The mineralogy and geochemistry of phosphorite. In: Nriagu JO, Moore PB (eds) Phosphate minerals, Chap. 8, Springer, Berlin, pp 275–291

  • Petit CJ (2006) spéciation et biogéochimie des métaux dans les milieux estuariens (estuaire de l’Escaut). Synthèse bibliographique, Université Libre de Bruxelles, 17 pp

  • Piper DZ (1994) Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem Geol 114:95–114

    Article  Google Scholar 

  • Salomons W, Förstner U (1980) Trace metal analysis on polluted sediments. II. Evaluation of environmental impact. Environ Technol Lett 1:506–517

    Article  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin, 349 p

  • Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterization of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57:491–504

    Article  Google Scholar 

  • Van Kauwenbergh SJ, McClellan GH (1990) Comparative geology and mineralogy of southern United States and Togo phosphorites. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development. Geological Society Special Publication No. 52, pp 139-155

  • Wedepohl KH (1991) The composition of the upper earth’s crust and the natural cycles of selected metals. In: Merian E (ed) Metals and their compounds in the environment. Verlag Chemie, Weinheim, pp p1–p10

    Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere thanks to the Geosciences Institute (Geochemistry Laboratory) of the University of Mainz (Germany) for laboratory facilities and the German Academic Exchange Service (DAAD) for the financial support. The authors acknowledge the critical reading of the manuscript by the referees of the journal and the language improvements made by an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gnandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnandi, K., Rezaie Boroon, M.H. & Edorh, P. The Geochemical Characterization of Mine Effluents from the Phosphorite Processing Plant of Kpémé (Southern Togo). Mine Water Environ 28, 65–73 (2009). https://doi.org/10.1007/s10230-008-0058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-008-0058-0

Keywords

Navigation