Skip to main content

Advertisement

Log in

Geochemistry and Mineralogy of Mill Tailings Impoundments from the Panasqueira Mine (Portugal): Implications for the Surrounding Environment

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Selected geochemical results are presented from a study of the Panasqueira mine (Sn–W mineralization), which is one of the Portuguese test sites for the e-EcoRisk project (http://www.e-ecorisk.info/). These data permit a better understanding of the dynamics inherent to leaching, transport, and accumulation of some elements (mainly As, but also Cu, Pb, Zn, and Cd) in different sampling media and their environmental relevance. Stream sediment and water samples were found to be contaminated by the stored waste material in the tailing ponds; this effect could be observed for a considerable distance downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali K, Cheng Q, Li W, Chen Y (2006) Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in south-central Yunnan Province, China. Geochem Explor Environ Anal 6(4):341–348

    Article  Google Scholar 

  • Alloway BJ (1993) Heavy metals in soils. Wiley & Sons Inc, New York, pp 339

  • Anazawa K, Kaida Y, Shinomura Y, Tomiyasu T, Sakamoto H (2004) Heavy-metal distribution in river waters and sediments around a “Firefly Village”, Shikoku, Japan: application of multivariate analysis. Anal Sci 20:79–84

    Article  Google Scholar 

  • ASTM (American Society for Testing Materials) (1984) Annual book of ASTM standards, water environmental technology, V 11.01

  • Birke M, Rauch U (1993) Environmental aspects of the regional geochemical survey in the southern part of East Germany. J Geochem Explor 49:35–61

    Article  Google Scholar 

  • Bloot C, de Wolf LCM (1953) Geological features of the Panasqueira tin-tungsten ore occurrence (Portugal). Bol Soc Geol Port 11(1):1–58

    Google Scholar 

  • Boult S, Collins ND, White KN, Curtis CD (1994) Metal transport in a stream polluted by acid mine drainage—the Afon Goch, Anglesey, UK. Environ Pollut 84:279–284

    Article  Google Scholar 

  • Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2:251–296

    Article  Google Scholar 

  • Brake SS, Connors KA, Romberger SB (2001) A river runs through it: impact of acid mine drainage on the geochemistry of West Little Sugar Creek pre- and post- reclamation at the Green Valley coal mine, Indiana, USA. Environ Geol 40:1471–1481

    Article  Google Scholar 

  • Breiter K (2001) Report about laboratory investigations of rock samples from the Panasqueira mine and recommendations for future exploration, Nov 2001

  • Brookins DG (1988) Eh–pH diagrams for Geochemistry. Springer-Verlag, Berlin

    Google Scholar 

  • Cavey G, Gunning D (2006) Updated technical report on the Panasqueira mine, Distrito de Castelo Branco, Portugal. OREQUEST, pp 67

  • Chapman BM, Jones DR, Jung RF (1983) Processes controlling metal ion attenuation in acid mine drainage streams. Geochim Cosmochim Acta 47:1957–1973

    Article  Google Scholar 

  • Chon HT, Cho CH, Kim KW, Moon HS (1995) The occurrence and dispersion of potentially toxic elements in areas covered with black shales and slates in Korea. Appl Geochem 11:69–76

    Article  Google Scholar 

  • Conde LN, Pereira V, Ribeiro A, Tadeu D (1971) Jazigos hipogénicos de estanho e volfrâmio. Livro-guia da Excursão #7, I Congresso Hispano-Luso-Americano de Geologia Económica, Lisboa, Madrid, Spain, pp 81

  • Correa A, Naique RA (1998) Minas Panasqueira, 100 years of mining history paper presented at the 1998 International Tungsten Industry Association (ITIA) conference

  • Corrêa de Sá A, Naique RA, Nobre E (1999) Minas da Panasqueira—100 anos de História. Bol Minas 36(1):3–22

    Google Scholar 

  • D’Orey FC (1967) Tin-tungsten mineralization and paragenesis in the Panasqueira and Vale de Ermida mining districts, Portugal. Comunicações Serviços Geológicos de Portugal, tomo LII, pp 117–167

  • de Carlo EH, Tomlinson MS, Anthony SS (2005) Trace elements in streambed sediments of small subtropical streams on O’ahu, Hawai’i: results from the USGS NAWQA program. Appl Geochem 20(12):2157–2188

    Article  Google Scholar 

  • Decree-Law 243/2001 (2001) Portuguese Republic Diary, Ministry for Environment, Spatial Planning and Regional Development. I SÉRIE-A #206, 5 Sept 2001

  • Dinis da Gama C (2002) Geotechnical and laboratory study of the tailings in the River Zêzere waste heap. Beralt tin and wolfram report, Lisbon, Portugal, pp 9

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy and mineral processing. Special issue: geochemical studies of mining and the environment. J Geochem Explor 74(1–3):3–55

    Article  Google Scholar 

  • Dove PM, Rimstidt JD (1985) The solubility and stability of scorodite, FeAsO4·2H2O. Am Mineral 70:838–844

    Google Scholar 

  • e-EcoRiskDoW (2001) Regional enterprise network decision-support system for environmental risk and disaster management of large-scale industrial spills. EU project coordinated by C Banninger, pp 70

  • e-Ecorisk (2007) A regional enterprise network decision-support system for environmental risk and disaster management of large-scale industrial spills. WP3-case study characterisation. Deliverable 3.1, pp 20

  • Farinha JA (2005) Packing and sealing of the sulphides existent on Rio tailing, environmental concerns. Internal technical note, April 2005, pp 5 + appendices

  • Ferreira da Silva E, Matos J, Patinha C, Reis P, Cardoso Fonseca E (2005) The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal area (Iberian Pyrite Belt, Southern Portugal). Land degradation and development, Wiley Europe, pp 213–228

  • Forstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. 2nd rev, 24th edn., Springer-Verlag, Berlin, pp 486

  • Frau F (2000) The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications. Mineral Mag 64:995–1006

    Article  Google Scholar 

  • Gieré R, Sidenko NV, Lazareva EV (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18(9):1347–1359

    Article  Google Scholar 

  • Julivert F, Fontboté J, Ribeiro A, Conde L (1974) Mapa Tectonico de la Península Ibérica y Baleares, escala 1:1,000,000. Inst Geol Minero España, Madrid, Spain, pp 113

  • Kelly WC, Rye RO (1979) Geologic, fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ Geol 74:1721–1822

    Article  Google Scholar 

  • Kim KW, Lee HK, Yoo BC (1998) The environmental impact of gold mines in the Yugu-Kwangcheon Au–Ag metallogenic province, Republic of Korea. Environ Technol 19:291–298

    Article  Google Scholar 

  • Lee JS, Chon HT, Kim JS, Kim KW, Moon HS (1998) Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environ Geochem Health 20:135–147

    Article  Google Scholar 

  • Lotze F (1945) Observation respect a la division de los variscides de la Meseta Ibérica. Publ Estrag Geol Espanã 5:149–166

    Google Scholar 

  • Nimick DA, Moore JM (1991) Prediction of water-soluble metal concentrations in fluvially deposited tailings sediments, Upper Clark Fork Valley, Montana. USA Appl Geochem 6:635–646

    Article  Google Scholar 

  • Nishida H, Miyai M, Tada F, Suzuki S (1982) Computation of the index of pollution caused by heavy metals in river sediments. Environ Pollut (B) 4:241–248

    Article  Google Scholar 

  • Nordstrom DK (1982) The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system Al2O3–SO3–H2O at 298 K. Geochim Cosmochim Acta 46:681–692

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96:3455–3462

    Article  Google Scholar 

  • Noronha F, Doria A, Dubessy J, Charoy B (1992) Characterization and timing of the different types of fluids present in the barren and ore veins of the W-Sn deposit of Panasqueira, Central Portugal. Miner Depos 27:72–79

    Article  Google Scholar 

  • Persaud D, Jaagumagi R, Hayton A (1993) Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy, Queen’s Printer for Ontario, Canada, pp 2

  • Plumlee GS, Smith S, Ficklin WH (1994) Geoenvironmental models of minerals deposits and geology-based- mineral–environmental assessments of public lands. USGS open-file report, pp 94–203

  • Ramsey MH, Thompson M, Banerjee EK (1987) Realistic assessment of analytical data quality from inductively coupled plasma atomic emission spectrometry. Anal Proc 24:260–265

    Article  Google Scholar 

  • Reimann C, Caritat P (1998) Chemical elements in the environment. Springer-Verlag, London, pp 398

  • Reis AC (1971) As Minas da Panasqueira. Bol Minas 8(1):3–34

    Google Scholar 

  • Robins RG (1987) The solubility and stability of scorodite, FeAsO42H2O (discussion). Am Mineral 72:842–844

    Google Scholar 

  • Rodrigues Abrantes J, Gonzalez V (1973) O tratamento mecânico do minério nas Minas da Panasqueira. Bol Minas 19(4):239–247

    Google Scholar 

  • Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration. 2nd edn., Academic Press, London, pp 657

  • Sainz A, Grande JA, de la Torre ML (2003) Odiel River, acid mine drainage and current characterisation by means of univariate analysis. Environ Int 29:51–59

    Article  Google Scholar 

  • Smith M (2006) Panasqueira the tungsten giant at 100+. Operation focus. Int Mining, April, pp 10–14

  • Sracek O, Choquette M, Gélinas P, Lefebvre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada. J Contam Hydrol 69:45–71

    Article  Google Scholar 

  • Valente T, Leal Gomes C (1998) Tipologia e evolução dos materiais de neoformação supergénica detectados na escombreira da Mina de Valdarcas (Vila Nova de Cerveira–N Portugal)—Implicações ambientais. Cadernos Lab. Xeológico de Laxe 23:43–58

    Google Scholar 

  • Wu Y, Hou X, Cheng X, Yao S, Xia W, Wang S (2007) Combining geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: a case study in Dongjiu Lake, Taihu Lake catchment, China. Environ Geol 52:1467–1474

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the European Commission through the e-Ecorisk Project (# EVG1-2002-25 0068), “A regional enterprise network decision-support system for environmental risk and disaster management of large-scale industrial spills”. The authors are greatly indebted to Professor Rafael Fernández-Rubio for his constructive comments and also to the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula F. Ávila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ávila, P.F., Silva, E.F.d., Salgueiro, A.R. et al. Geochemistry and Mineralogy of Mill Tailings Impoundments from the Panasqueira Mine (Portugal): Implications for the Surrounding Environment. Mine Water Environ 27, 210–224 (2008). https://doi.org/10.1007/s10230-008-0046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-008-0046-4

Keywords

Navigation