Skip to main content
Log in

Ecomorphological diversification of the Cyprinodon species complex from Lake Chichankanab, Yucatan, Mexico

  • Full Paper
  • Published:
Ichthyological Research Aims and scope Submit manuscript

Abstract

Chichankanab is a small, shallow, ⁓8,000-year-old, tropical lake where the adaptive radiation of seven sympatric Cyprinodon species have been described. Since the variation in size, morphology, and diet play a key role in facilitating niche partitioning, this study aims to determine if the sympatric species can be independently identified by their variation in size, morphology, and diet and to understand the role of those variables in the ongoing diversification. To fulfill our aim we gathered, from fish collections, an updated sample of the seven sympatric species and the sister species Cyprinodon artifrons from whom we took their size and photographs to develop geometric morphometric analyses, and collected information on their diet. According to our results, size range allows the separation of Cyprinodon beltrani as the largest species, geometric morphometric allows the segregation C. beltrani, Cyprinodon simus, Cyprinodon suavium, and Cyprinodon labiosus, and a morphotype of three species, Cyprinodon esconditus, Cyprinodon verecundus, and Cyprinodon maya, which can be segregated by body measurements and the size of the species. The diet can help to segregate C. beltrani herbivore, C. maya piscivore/omnivore, C. simus zooplanktivore/detritivore, C. suavium and C. verecundus carnivore/molluscivore, and C. esconditus and C. labiosus carnivores. The ongoing hybridization and the changes in the lake are driving the diversification and decrease of these species. According to our results, there is not one character that differentiated all the species, differentiation was only possible through their specific variation in one character or by a specific combination of characters. It is important to monitor and keep updating information on these evolving species since all seven are listed in the IUCN as vulnerable and near threatened, and according to official Mexican categories as in danger of extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Medrano R, Frederich B, Balart EF, de Luna E (2013) Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Zoomorphology 132:197–213

    Article  Google Scholar 

  • Aguilar-Medrano R, Frederich B, Barber PH (2016) Modular diversification of the locomotor system in damselfishes (Pomacentridae). J Morphol 277:603–614

    Article  PubMed  Google Scholar 

  • Anderson, M. J. (2021). A new method for non-parametric multivariate analysis of variance. Austral Ecol, 26:32–46.

    Google Scholar 

  • Berrigan D, Koella JC (1994) The evolution of reaction norms: simple-models for age and size at maturity. J Evol Biol 7:549–566

    Article  Google Scholar 

  • Bonduriansky R, Rowe L (2005) Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59:138–151

    PubMed  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Boughman JW, Rundle HD, Schluter D (2005) Parallel evolution of sexual isolation in sticklebacks. Evolution 59:361–373

    PubMed  Google Scholar 

  • Brenner M, Hodell DA, Curtis JH, Rosenmeier MF, Anselmetti FS, Arizteguiet D (2003) Paleolimnological approaches for inferring past climate change in the Maya Region: recent advances and methodological limitations. In: Gómez-Pompa A, Allen MF, Fedick SL, Jiménez-Osorio JJ (eds) The Lowland Maya area. Food Products Press, Binghamton, pp 45–75

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in assemblage structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  • Covich A, Stuiver M (1974) Changes in oxygen 18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnol Oceanogr 19:682–691

    Article  Google Scholar 

  • Cruz R, Carballo P, Conde-Padín P, Rolán-Alvarez E (2004) Testing alternative models for sexual isolation in natural populations of Littorina saxatilis: indirect support for by-product ecological speciation? J Evol Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Drucker EG, Lauder GV (2001) Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J Exp Biol 204:2943–2958

    Article  CAS  PubMed  Google Scholar 

  • Drucker EG, Lauder GV (2005) Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J Exp Biol 208:4479–4494

    Article  PubMed  Google Scholar 

  • Elias-Gutierrez M, Smirnow NN, Suarez-Morales E, Dimas-Flores N (2001) New and little known cladocerans (Crustacea: Anomopoda) from southeastern Mexico. Hydrobiologia 442:41–54

    Article  Google Scholar 

  • Elliott JP, Bellwood DR (2003) Alimentary tract morphology and diet in three coral reef fish families. J Fish Biol 63:1598–1609

    Article  Google Scholar 

  • Feulner PGD, Kirschbaum F, Mamonekene V, Ketmaier V, Tiedemann R (2007) Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approach. J Evol Biol 20:403–414

    Article  CAS  PubMed  Google Scholar 

  • Fulton CJ (2007) Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups. Coral Reefs 26:217–228

    Article  Google Scholar 

  • Fuselier L (2001) Impacts of Oreochromis mossambicus (Perciformes: Cichlidae) upon habitat segregation among cyprinodontids (Cyprinodontiformes) of a species flock in Mexico. Rev Biol Trop 49:647–656

    CAS  PubMed  Google Scholar 

  • Grillner S (2011) Brain and nervous system, motor control systems of fish. In: Farrell AP (ed) Encyclopedia of fish physiology. Academic Press, Cambridge, pp 56–65

    Chapter  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Palentological Statistics software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of classic maya civilization. Nature 375:391–394

    Article  CAS  Google Scholar 

  • Horstkotte J, Plath M (2008) Divergent evolution of feeding substrate preferences in a phylogenetically young species flock of pupfish (Cyprinodon spp.). Sci Nat 95:1175–1180

    Article  CAS  Google Scholar 

  • Horstkotte J, Strecker U (2005) Trophic differentiation in the phylogenetically young Cyprinodon species flock (Cyprinodontidae, Teleostei) from Laguna Chichancanab (Mexico). Biol J Linn Soc 85:125–134

    Article  Google Scholar 

  • Humphries JM (1984a) Cyprinodon verecundus, n. sp., a fifth species of pupfish from Laguna Chichancanab. Copeia 1984:58–68

  • Humphries JM (1984b) Genetics of speciation in pupfishes from Laguna Chichancanab, Mexico. In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine Press, Orono, pp 129–139

  • Humphries JM, Miller RR (1981) A remarkable species flock of pupfishes, genus Cyprinodon, from Yucatán, México. Copeia 1981:52–64

    Article  Google Scholar 

  • Kodric-Brown A, Strecker U (2001) Responses of Cyprinodon maya and C. labiosus females to visual and olfactory cues of conspecific and heterospecific males. Biol J Linn Soc 74:541–548

    Article  Google Scholar 

  • Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415‒424

    Article  CAS  PubMed  Google Scholar 

  • Lauder GV (2000) Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am Zool 40:101–122

    Google Scholar 

  • Malerba ME, White CR, Marshall DJ (2017) Eco-energetic consequences of evolutionary shifts in body size. Ecol Lett 21:54–62

    Article  PubMed  Google Scholar 

  • Marba N, Duarte CM, Agusti S (2007) Allometric scaling of plant life history. Proc Natl Acad Sci U S A 104:15777–15780

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller RR (1948) The Cyprinodont fishes of the Death Valley system of Eastern California and Southwestern Nevada. Miscellaneous Publications. Museum of Zoology, University of Michigan, no. 68. University of Michigan Press, Ann Arbor

  • Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of Mexico. University of Chicago Press, Chicago

    Google Scholar 

  • Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the Karst Aquifer System of the Northern Yucatan Peninsula, Mexico. Int Geol Rev 44:191–221

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Portz DE, Tyus HM (2004) Fish humps in two Colorado River fishes: a morphological response to cyprinid predation? Environ Biol Fishes 71:233–245

    Article  Google Scholar 

  • Ramsar (2004) Ficha Informativa de los Humedales de Ramsar. Laguna de Chichankanab. https://rsis.ramsar.org/RISapp/files/RISrep/MX1364RIS.pdf . Accessed 07 05 2024

  • Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359

    Article  Google Scholar 

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. Methods Ecol Evol 16:197–223

    Google Scholar 

  • Rohlf FJ (2015) The tps series of software. Hystrix 26:9–12

    Google Scholar 

  • Savage VM, Gilloly JF, Brown JH, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:33–40

    Article  Google Scholar 

  • Standen EM (2008) Pelvic fin locomotor function in fishes: three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2931–2942

    Article  CAS  PubMed  Google Scholar 

  • Stevenson MM (1992) Food habits within the Laguna Chichancanab Cyprinodon (Pisces: Cyprinodontidae) species flock. Southwest Nat 37:337–343

    Article  Google Scholar 

  • Strecker U (2002) Cyprinodon esconditus, a new pupfish from Laguna Chichancanab, Yucatan, Mexico (Cyprinodontidae). Cybium 26:301–307

    Google Scholar 

  • Strecker U (2005) Description of a new species from Laguna Chichancanab, Yucatan, Mexico: Cyprinodon suavium (Pisces: Cyprinodontidae). Hydrobiologia 541:107–115

    Article  Google Scholar 

  • Strecker U (2006a) Genetic differentiation and reproductive isolation in a Cyprinodon fish species flock from Laguna Chichancanab, Mexico. Mol Phylogenet Evol 39:865–872

  • Strecker U (2006b) The impact of invasive fish on an endemic Cyprinodon species flock (Teleostei) from Laguna Chichancanab, Yucatan, Mexico. Ecol Freshw Fish 15:408–418

  • Strecker U, Kodric-Brown A (1999) Mate recognition systems in a species flock of Mexican pupfish. J Evol Biol 12:927–935

    Article  Google Scholar 

  • Strecker U, Kodric-Brown A (2000) Mating preferences in a species flock of Mexican pupfishes (Cyprinodon, Teleostei). Biol J Linn Soc 71:677–687

    Article  Google Scholar 

  • Strecker U, Meyer CG, Sturmbauer C, Wilkens H (1996) Genetic divergence and speciation in an extremely young species flock in Mexico formed by the genus Cyprinodon (Cyprinodontidae, Teleostei). Mol Phylogenet Evol 6:143–149

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Jacquin L, Lek S, Liu H, Li Z, Liu J, Zhang T (2017) Differences in anti-predator behavior and survival rate between hatchery-reared and wild grass carp (Ctenopharyngodon idellus). Int J Limnol 53:361–367

    Article  Google Scholar 

  • Videler JJ (1993) Fish swimming. Chapman and Hall/Springer, London

    Book  Google Scholar 

  • Webb PW, Weihs D (1986) Functional locomotor morphology of early life history stages of fishes. Am Fish Soc Symp 115:115–127

    Article  Google Scholar 

  • Wilkens H (1982) Regressive evolution and phylogenetic age: the history of colonization of freshwaters of Yucatan by fish and crustacea. Bull Texas Mem Mus 28:237–243

    Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas ML (2003) Detritus in the epilithic algalmatrix and its use by coral reef fishes. Oceanogr Mar Biol 41:279–309

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic Press, London

    Google Scholar 

Download references

Acknowledgments

We thank Mirella Hernández de Santillana and Mirna Erendira Estrella Martinez for their help in the museum collections. To Rodolfo Pérez Rodríguez for his very helpful comments. Finally, we would like to thank the anonymous reviewers and editor for their comments and suggestions that highly improved the document. Both authors are fellow recipients of the National System of Researchers (CONHACYT-SNII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalía Aguilar-Medrano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The handling of the specimens was carried out according to the guidelines of each fish collection and the University or Research Center that contains them. All specimens used were preserved specimens as no live specimens were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 405 KB)

Supplementary file2 (DOCX 18 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Medrano, R., Vega-Cendejas, M.E. Ecomorphological diversification of the Cyprinodon species complex from Lake Chichankanab, Yucatan, Mexico. Ichthyol Res (2024). https://doi.org/10.1007/s10228-024-00980-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10228-024-00980-2

Keywords

Navigation