Skip to main content

Mitogenomic phylogeny revealed the fine population structure of an endangered cyprinid fish Pseudorasbora pugnax in the Tokai region, central Japan

Abstract

The complete mitochondrial genome sequences (mitogenomes) from 19 populations (originating from 15 localities) of Pseudorasbora pugnax, covering almost all known populations of the endangered species, were determined to clarify their genetic population structure and evolutionary history. The 211 cytochrome b (cytb) gene sequences indicated low intrapopulation genetic diversity, and each population had only one or two haplotypes. The 37 mitogenome sequences also indicated low intrapopulation diversity, and the haplotypes were unique to every population. The phylogenetic relationships among the mitogenomic haplotypes indicated three groups, including subgroups, and the groups and subgroups were distributed in different geographic areas. These results suggest that the unique haplotypes in each population had not been randomly fixed by recent population fragmentation of this species, and the geographic distribution reflects the historical population structure. The divergence time estimated by mitogenomic data indicates that the genetic divergence of mtDNA groups occurred in the Pleistocene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aichi Environmental Research Center (ed) (2020) Red Data Book Aichi 2020 - Animals -. Aichi Prefectural Government, Nagoya (in Japanese)

  • Bishop CR, Hughes JM, Schmidt DJ (2018) Mitogenomic analysis of the Australian lungfish (Neoceratodus forsteri) reveals structuring of indigenous riverine populations and late Pleistocene movement between drainage basins. Conserv Genet 19:587–597

    CAS  Article  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Boscari E, Barmintseva A, Pujolar JM, Doukakis P, Mugue N, Congiu L (2014) Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade. Mol Ecol Resour 14:489–498

    CAS  PubMed  Article  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A, Heled J, Jones G, Kuhnert D, de Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:e1006650

  • Bunholi IV, da Silva Ferrette BL, De Biasi JB, de Oliveira Magalhães C, Rotundo MM, Oliveira C, Foresti F, Mendonça FF (2018) The fishing and illegal trade of the angelshark: DNA barcoding against misleading identifications. Fish Res 206:193–197

    Article  Google Scholar 

  • Burridge CP, Craw D, Fletcher D, Waters JM (2008) Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 25:624–633

    CAS  PubMed  Article  Google Scholar 

  • Cao Y, Sorenson MD, Kumazawa Y, Mindell DP, Hasegawa M (2000) Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 259:139–148

    CAS  PubMed  Article  Google Scholar 

  • Carr SM, Marshall HD (2008) Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the “codmother”, transatlantic vicariance and midglacial population expansion. Genetics 180:381–389

    PubMed  PubMed Central  Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    CAS  PubMed  Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Article  Google Scholar 

  • Feutry P, Kyne PM, Pillans RD, Chen X, Naylor GJ, Grewe PM (2014) Mitogenomics of the Speartooth Shark challenges ten years of control region sequencing. BMC Evol Biol 14:232

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Galtier N, Nabholz B, Glémin S, Hurst GD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    CAS  PubMed  Article  Google Scholar 

  • Gifu Prefectural Government (2010) Red List of Gifu. https://www.pref.gifu.lg.jp/page/4261.html. Accessed 19 January 2022 (in Japanese)

  • Hasegawa K, Kanao S, Miyazaki Y, Mukai T, Nakajima J, Takaku K, Taniguchi Y (2019) Pseudorasbora pugnax. The IUCN Red List of Threatened Species 2019: e.T122055564A122055572. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T122055564A122055572.en. Accessed on 23 January 2022

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Evol Syst 31:139–162

    Article  Google Scholar 

  • Hirase S, Takeshima H, Nishida M, Iwasaki W (2016) Parallel mitogenome sequencing alleviates random rooting effect in phylogeography. Genome Biol Evol 8:1267–1278

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hirayama M, Mukai T, Miya M, Murata Y, Sekiya Y, Yamashita T, Nishida M, Watabe S, Oda S, Mitani H (2010) Intraspecific variation in the mitochondrial genome among local populations of Medaka Oryzias latipes. Gene 457:13–24

    CAS  PubMed  Article  Google Scholar 

  • Ho SYW, Larson G (2006) Molecular clocks: when times are a-changin’. Trends Genet 22:79–83

    CAS  PubMed  Article  Google Scholar 

  • Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568

    CAS  PubMed  Article  Google Scholar 

  • Inoue JG, Miya M, Aoyama J, Ishikawa S, Tsukamoto K, Nishida M (2001) Complete mitochondrial DNA sequence of the Japanese eel Anguilla japonica. Fish Sci 67:118–125

    CAS  Article  Google Scholar 

  • Ishiguro N, Miya M, Nishida M (2001) Complete mitochondrial DNA sequence of ayu Plecoglossus altivelis. Fish Sci 67:474–481

    CAS  Article  Google Scholar 

  • Ito G, Koya Y, Kitanishi S, Horiike T, Mukai T (2019) Genetic population structure of the eight-barbel loach Lefua echigonia in the Ise Bay region, a single paleo-river basin in central Honshu, Japan. Ichthyol Res 66:411–416

    Article  Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jacobsen MW, Pujolar JM, Hansen MM (2015) Relationship between amino acid changes in mitochondrial ATP6 and life-history variation in anguillid eels. Biol Lett 11:20150014

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Japan Ministry of the Environment (2015) Japan Red Data Book 2014—Threatened wildlife of Japan. Ministry of the Environment, Japan, Tokyo (in Japanese)

  • Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    CAS  PubMed  Article  Google Scholar 

  • Kawase S, Hosoya K (2015) Pseudorasbora pugnax, a new species of minnow from Japan, and redescription of P. pumila (Teleostei: Cyprinidae). Ichthyol Explor Freshw 25:289–298

    Google Scholar 

  • Keis M, Remm J, Ho SY, Davison J, Tammeleht E, Tumanov IL, Saveljev AP, Männil P, Kojola I, Abramov AV, Margus T, Saarma U (2013) Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographical structure and migration patterns among brown bears in north‐western Eurasia. J Biogeogr 40:915–927

    Article  Google Scholar 

  • Kitahara T (1893) Freshwater fish specimens from Gifu Prefecture (in Japanese). Zool Mag 5:465–468

    Google Scholar 

  • Kitanishi S, Hayakawa A, Takamura K, Nakajima J, Kawaguchi Y, Onikura N, Mukai T (2016) Phylogeography of Opsariichthys platypus in Japan based on mitochondrial DNA sequences. Ichthyol Res 63:506–518

    Article  Google Scholar 

  • Knaus BJ, Cronn R, Liston A, Pilgrim K, Schwartz MK (2011) Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecol 11:10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41:W22–W28

    PubMed  PubMed Central  Article  Google Scholar 

  • Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. Quat Sci Rev 21:343–360

    Article  Google Scholar 

  • Marshall HD, Coulson MW, Carr SM (2009) Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish. Mol Biol Evol 26:579–589

    CAS  PubMed  Article  Google Scholar 

  • Mie Prefectural Government (2015) Red Data Book Mie. Mie Prefectural Goverment, Tsu (in Japanese)

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    CAS  PubMed  Article  Google Scholar 

  • Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Nielsen SC, Rasmussen M, Willerslev E, Gilbert MT, Harkins T (2010) Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 20:908–916

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Moritz C (2000) A molecular perspective on the conservation of diversity. In: Kato M (ed) The biology of biodiversity. Springer, Tokyo, pp 21–34

    Chapter  Google Scholar 

  • Mukai T (2011) The re-introduction of the Ushimotsugo minnow in Gifu Prefecture, Japan. In: Soorae PS (ed) Global Re-introduction Perspectives: 2011. More case studies from around the globe. Gland, Switzerland, pp 54–58

  • Mukai T (2016) An endangered freshwater fish Pseudorasbora pugnax: a historical legacy in Gifu City. Bull Fac Regional Stud Gifu Univ 39:41–45 (in Japanese)

    Google Scholar 

  • Nakamura M (1969) Cyprinid fishes of Japan: studies on the life history of cyprinid fishes of Japan. Research Institute of Natural Resources, Tokyo (in Japanese)

  • Nedbal MA, Flynn JJ (1998) Do the combined effects of the asymmetric process of replication and DNA damage from oxygen radicals produce a mutation-rate signature in the mitochondrial genome? Mol Biol Evol 15:219–223

    CAS  PubMed  Article  Google Scholar 

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  PubMed  Article  Google Scholar 

  • Niwa H (1957) Fishes of Nagara River. In: Editorial committee for Aquatic Organisms of Nagara River (ed) Aquatic organisms of Nagara River. Gifu Prefectural Office, Gifu (in Japanese)

  • Niwa H (1967) Fishes of Kiso River. Taisyu Shobo, Gifu (in Japanese)

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  • Ohnaka T, Mori S (2005) Ushimotsugo. In: Katano O, Mori S (eds) Now and future of threatened freshwater fishes. Shinzansya, Tokyo, pp 111–121 (in Japanese)

  • Ohnaka T, Sasaki H, Nagai K, Numachi K (1999) Marked monomorphism at the D-loop region of mtDNA in an endangered species Pseudorasbora pumila subsp. sensu Nakamura (1963). Nippon Suisan Gakkaishi 65:1005–1009

    CAS  Article  Google Scholar 

  • Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA (2011) Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 28:1927–1942

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pan D, Shi B, Du S, Gu T, Wang R, Xing Y, Zhang Z, Chen J, Cumberlidge N, Sun H (2021) Mitogenome phylogeny reveals Indochina Peninsula origin and spatiotemporal diversification of freshwater crabs (Potamidae: Potamiscinae) in China. Cladistics 38:1–12

    PubMed  Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    CAS  PubMed  Article  Google Scholar 

  • Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63:826–841

    CAS  PubMed  Article  Google Scholar 

  • Sam KK, Lau NS, Shu-Chien AC, Muchlisin ZA, Nugroho RA (2021) Complete mitochondrial genomes of Paedocypris micromegethes and Paedocypris carbunculus reveal conserved gene order and phylogenetic relationships of miniaturized cyprinids. Front Ecol Evol 9:662501

    Article  Google Scholar 

  • Santos C, Montiel R, Sierra B, Bettencourt C, Fernandez E, Alvarez L, Lima M, Abade A, Aluja MP (2005) Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: a model using families from the Azores Islands (Portugal). Mol Biol Evol 22:1490–1505

    CAS  PubMed  Article  Google Scholar 

  • Sarkar UK, Pathak AK, Lakra WS (2008) Conservation of freshwater fish resources of India: new approaches, assessment and challenges. Biodivers Conserv 17:2495–2511

    Article  Google Scholar 

  • Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–1902

    CAS  PubMed  Article  Google Scholar 

  • Shamblin BM, Bjorndal KA, Bolten AB, Hillis-starr ZM, Lundgren I, Naro-maciel E, Nairn CJ (2012) Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol Ecol 21:2330–2340

    CAS  PubMed  Article  Google Scholar 

  • Suganuma Y, Suzuki T, Yamazaki H (2003) Chrono-stratigraphy of the Ina Group, Central Japan, based on correlation of volcanic ash layers with Pleistocene widespread tephras. Quat Res (Daiyonki-Kenkyu) 42:321–334 (in Japanese with English abstract)

  • The Environmental Agency of Japan (2020) Red List. https://www.env.go.jp/nature/kisho/hozen/redlist/. Accessed 19 January 2022 (in Japanese)

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Umemura K, Futamura R, Takagi M, Ikeya K, Mukai T (2011) Distribution of non-indigenous mitochondrial DNA lineage in the local populations of an endangered bitterling, Acheilognathus tabira tabira, in the Gifu Prefecture, Japan. Bull Biogeogr Soc Jpn 67:169–174

    Google Scholar 

  • Watanabe K, Mori S (2008) Comparison of genetic population structure between two cyprinids, Hemigrammocypris rasborella and Pseudorasbora pumila subsp., in the Ise Bay basin, central Honshu, Japan. Ichthyol Res 55:309–320

    Article  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    CAS  PubMed  Article  Google Scholar 

  • Xu W, Geng LW, Xu M, Tong GX, Jiang HF (2016) Mitochondrial DNA sequence of Pseudorasbora parva (Cyprinidae: Gobioninae). Mitochondrial DNA A DNA Mapp Seq Anal 27:416–417

    CAS  PubMed  Article  Google Scholar 

  • Zhang Z, Cheng Q, Ge Y (2019) The complete mitochondrial genome of Rhynchocypris oxycephalus (Teleostei: Cyprinidae) and its phylogenetic implications. Ecol Evol 9:7819–7837

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Y. Miwa, K. Tsukahara and members of Gifu Mino Ecological Research Group (Seki-shi), T. Ohnaka (Inuyama Institute for Satoyama Sciences), Y. Chimura (Hekinan Seaside Aquarium), M. Yamamoto (Tokigawa-kansatsukan, Tajimi), Y. Ohno (Gifu-shi), T. Asai and A. Suzuki (Seibutsutayoseiaigokai, Nissin), K. Mitsuoka (Toyota-shi), S. Kawase (Kindai University), S. Kanao (Lake Biwa Museum), J. Kitamura (Mie Prefectural Museum), S. Mitani (Toba Aquarium), K. Kawamura (Mie Univ.), T. Hoshino (Taiyokiko Co., LTD.), Y. Taniguchi (Meijo Univ.), Y. Matsuzawa (Photographer) and Y. Koya (Gifu Univ.) for providing specimens and valuable information, and Division of Genomics Research, Life Science Research Center, Gifu University for helping DNA sequencing. We appreciate R. Nakashima (Aichi Fisheries Research institute) for insightful discussions and E. Sawada (Kyoto Univ.) for help with tables. We would like to thank Editage (https://www.editage.com) for English language editing. This study was supported in part by JSPS KAKENHI (nos. 23510292 and 2625004) to T. Mukai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyein Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Mukai, T. Mitogenomic phylogeny revealed the fine population structure of an endangered cyprinid fish Pseudorasbora pugnax in the Tokai region, central Japan. Ichthyol Res (2022). https://doi.org/10.1007/s10228-022-00883-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10228-022-00883-0

Keywords

  • Mitochondrial DNA
  • Phylogeography
  • Freshwater fish
  • Conservation