Skip to main content
Log in

The lateral line system and its innervation in the masu salmon Oncorhynchus masou masou (Salmonidae)

  • Full Paper
  • Published:
Ichthyological Research Aims and scope Submit manuscript

Abstract

The lateral line system and its innervation were examined in the masu salmon Oncorhynchus masou masou. The species has 8 cephalic canals (supraorbital, infraorbital, otic, preopercular, mandibular, postotic, supratemporal, and temporal portion of trunk), 1 trunk canal and 9 superficial neuromast groups (rostral, nostril, preinfraorbital, postocular, cheek and supratemporal groups in the cephalic groups, and predorsal, trunk accessory and caudal fin groups in the trunk groups). The components are generally similar to those in many other teleosts, the lateral line system of O. m. masou is distinctive in having a preinfraorbital superficial neuromast group and lacking infraorbital, mandibular and opercular superficial neuromast groups. The lateral line system of O. m. masou is compared with some other species of Oncorhynchus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akihito, Sakamoto K, Ikeda Y, Sugiyama K (2002) Suborder Gobioidei. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species, English edition. Tokai University Press, Tokyo, pp 1139–1310

    Google Scholar 

  • Asaoka R, Nakae M, Sasaki K (2014) Innervation of the lateral line system in Rhyacichthys aspro: the origin of superficial neuromast rows in gobioids (Perciformes: Rhyacichthyidae). Ichthyol Res 61:49–58

    Article  Google Scholar 

  • Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Orti G (2017) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162. https://doi.org/10.1186/s12862-017-0958-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AD, Sisneros JA, Jurasin T, Nguyen C, Coffin AB (2013) Differences in lateral line morphology between hatchery- and wild-origin steelhead. PLoS ONE 8:e59162. https://doi.org/10.1371/journal.pone.0059162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MA, López JA, Sado T, Miya M (2013) Pike and salmon as sister taxa: Detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. Gene 530:57–65

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line system: evolutionary and functional considerations. In: Atema J, Fay RR, Propper AN, Tovolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Coombs S, Bak-Coleman J, Montgomery J (2020). Rheotaxis revisited: a multi-behavioral and multisensory perspective on how fish orient to flow. J Exp Biol 223:jeb223008 https://doi.org/10.1242/jeb.223008

  • Devillers C (1947) Recherches sur la crâne dermique des téléostéens. Ann Paleontol 33:1–94

    Google Scholar 

  • Disler NN (1971) Lateral line sense organs and their importance in fish behavior. Israel Program for Scientific Translations, Jerusalem

  • Filipski GT, Wilson MVH (1984) Sudan Black B as a nerve stain for whole cleared fishes. Copeia 1984:204–208

    Article  Google Scholar 

  • Fraser TH, Freihofer WC (1971) Trypsin modification for Sihler technique of staining nerves for systematic studies of fishes. Copeia 1971:574–576

    Article  Google Scholar 

  • Hikita T (1962) Ecological and morphological studies of the genus Oncorhynchus (Salmonidae) with particular consideration on phylogeny. Sci Rep Hokkaido Salmon Hatchery 17:1–97

    Google Scholar 

  • Hirota K, Asaoka R, Nakae M, Sasaki K (2015) The lateral line system and its innervation in Zenarchopterus dunckeri (Beloniformes: Exocoetoidei: Zenarchopteridae): an example of adaptation to surface feeding in fishes. Ichthyol Res 62:286–292

    Article  Google Scholar 

  • Hosoya K (2002) Family Salmonidae. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species, English edition. Tokai University Press, Tokyo, pp 299–304

    Google Scholar 

  • Hutchings JA, Ardren WR, Barlaup BT, Bergman E, Clarke KD, Greenberg LA, Lake C, Piironen J, Sirois P, Sundt-Hansen LE, Fraser DJ (2019) Life-history variability and conservation status of landlocked Atlantic salmon: an overview. Can J Fish Aquat Sci 76:1697–1708

    Article  Google Scholar 

  • Jakubowski M (1966) Cutaneous sense organs of fishes. IV. The lateral-line organs in the perch-like Lucioperca lucioperca and perch Perca fluviatilis, their topography, innervation, vascularization, and structure. Act Biol Cracov Ser Zool 9:138–149

    Google Scholar 

  • Jakubowski M (1967) Cutaneous sense organs of fishes. VI. The structure, topography, and innervation of lateral line organ in the burbot (Lota lota). Act Biol Cracov Ser Zool 10:69–81

    Google Scholar 

  • Jollie M (1975) Development of the head skeleton and pectoral girdle in Esox. J Morphol 147:61–88

    Article  CAS  PubMed  Google Scholar 

  • Jollie M (1984) Development of the head skeleton and pectoral girdle of salmons, with a note on the scales. Can J Zool 62:1757–1778

    Article  Google Scholar 

  • Juanes F, Rand PS, Burridge CP (2019) Taiwan in salmon or salmon in Taiwan? Celebrating the 100th anniversary of the discovery of Formosa landlocked salmon. Ichthyol Res 66:515–518

    Article  Google Scholar 

  • Kato F (1991) Life histories of masu and amao salmon (Oncorhynchus masou and Oncorhynchus rhodurus). In: Groot C, Margolis L (eds) Pacific salmon life histories. University of British Columbia Press, Vancouver, pp 448–520

    Google Scholar 

  • Kershner JL, Williams JE, Gresswell RE, Lobón-Cerviá J (eds) (2019) Trout and char of the world. American Fisheries Society, Bethesda

    Google Scholar 

  • Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Act Zool 30:1–131

    Article  Google Scholar 

  • Liao JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090

    Article  PubMed  Google Scholar 

  • Mogdans J (2019) Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. J Fish Biol 95:53–72

    PubMed  Google Scholar 

  • Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N (2003) Sensory integration in the hydrodynamic world of rainbow trout. Proc R Soc Lond 270:S195–S197

    Article  Google Scholar 

  • Morita K (2018) General biology of masu salmon. In: Beamish RJ (ed) The ocean ecology of Pacific salmon and trout. American Fisheries Society, Bethesda, pp 703–730

    Google Scholar 

  • Myoung JG, Kim YU (1996) Morphological study of Oncorhynchus spp. in Korea – V. Comparison of skeletal characters of chum salmon O. keta, masu salmon O. masou and rainbow trout O. mykiss. J Korean Fish Soc 29:208–229

    Google Scholar 

  • Nakae M, Asaoka R, Wada H, Sasaki K (2012a) Fluorescent dye staining of neuromasts in live fishes: an aid to systematic studies. Ichthyol Res 59:286–290

    Article  Google Scholar 

  • Nakae M, Katayama E, Asaoka R, Hirota M, Sasaki K (2012b) Lateral line system in the triplefin Enneapterygius etheostomus (Perciformes: Tripterygiidae): new implications for taxonomic studies. Ichthyol Res 59:268–271

    Article  Google Scholar 

  • Nakae M, Kuroki M, Sato M, Sasaki K (2021) The lateral line system and its innervation in the Japanese eel Anguilla japonica (Teleostei: Elopomorpha: Anguillidae). J Morphol 282:863–873

    Article  PubMed  Google Scholar 

  • Nakae M, Sasaki K (2008) Branchial arch muscle innervation by the glossopharyngeal (IX) and vagal (X) nerves in Tetraodontiformes, with special reference to muscle homologies. J Morph 269:674–690

    Article  PubMed  Google Scholar 

  • Nakae M, Sasaki K (2010) Lateral line system and its innervation in Tetraodontiformes with outgroup comparisons: descriptions and phylogenetic implications. J Morph 271:559–579

    PubMed  Google Scholar 

  • Nakae M, Shinohara G, Miki K, Abe M, Sasaki K (2013) Lateral line system in Scomberomorus niphonius (Teleostei, Perciformes, Scombridae): recognition of 12 groups of superficial neuromasts in a rapidly-swimming species and a comment on function of highly branched lateral line canals. Bull Natl Mus Nat Sci Ser A 39:39–49

    Google Scholar 

  • Nelson GJ (1972) Cephalic sensory canals, pitlines, and the classification of esocoid fishes, with notes on galaxiids and other teleosts. Am Mus Nov 242:1–49

  • Northcutt RG, Holmes PH, Albert JS (2000) Distribution and innervation of lateral line organs in the channel catfish. J Comp Neurol 421:570–592

    Article  CAS  PubMed  Google Scholar 

  • Sanford CJ (2000) Salmonid fish osteology and phylogeny (Teleostei: Salmonoidei). A.R.G. Gantner Verlag KG, Ruggell

    Google Scholar 

  • Sato M, Asaoka R, Nakae M, Sasaki K (2017) The lateral line system and its innervation in Lateolabrax japonicus (Percoidei incertae sedis) and two apogonids (Apogonidae), with special reference to superficial neuromasts (Teleostei: Percomorpha). Ichthyol Res 64:308–330

    Article  Google Scholar 

  • Sato M, Nakae M, Sasaki K (2019) Convergent evolution of the lateral line system in Apogonidae (Teleostei: Percomorpha) determined from innervation. J Morph 280:1026–1045

    Article  PubMed  Google Scholar 

  • Sato M, Nakae M, Sasaki K (2021a) The lateral line system in the Nurseryfish Kurtus gulliveri (Percomorpha: Kurtidae): a distribution and innervation of superficial neuromasts unique within percomorphs. Ichthyol Herpetol 109:31–42

    Article  Google Scholar 

  • Sato M, Nakae M, Sasaki K (2021b) The paedomorphic lateral line system in Pseudamiops and Gymnapogon (Percomorpha, Apogonidae), with morphological and molecular-based phylogenetic considerations. J Morphol 282:652–678

    Article  CAS  PubMed  Google Scholar 

  • Satou M, Takeuchi H-A, Nishii J, Tanabe M, Kitamura S, Okumoto N, Iwata M (1994) Behavioral and electrophysiological evidence that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Neurophysiol A 174:539–549

    Google Scholar 

  • Schellart NAM, Prins M, Kroese ABA (1992) The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). Brain Behav Evol 39:371–380

    Article  CAS  PubMed  Google Scholar 

  • Siregar YI (1994) Morphology and growth of lateral line organs of the rainbow trout (Oncorhynchus mykiss). Acta Zool 75:213–218

    Article  Google Scholar 

  • Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207

    Article  Google Scholar 

  • Ueda H (2016) Physiological mechanisms of imprinting and homing migration of Pacific salmon. Aqua-Biosci Monogr 9:1–27

    Article  Google Scholar 

  • Vladykov V (1926) Lateral line system in Salmonidae. Part I. Topography and histology of lateral system in common trout (Trutta fario L.). Spisy Vydavane Priordoved Fak Karlovy Univ 57:1–38

    Google Scholar 

  • Wada H, Ghysen A, Satou C, Higashijima S, Kawakami K, Hamaguchi S, Sakaizumi M (2010) Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Develop Biol 340:583–594

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Kawanishi K (2015) Size control during organogenesis: Development of the lateral line organs in zebrafish. Develop Grow Different 57:169–178

    Article  Google Scholar 

  • Wark AR, Peichel CL (2010) Lateral line diversity among ecologically divergent threespine stickleback populations. J Exp Biol 213:108–117

    Article  CAS  PubMed  Google Scholar 

  • Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53

    Article  CAS  PubMed  Google Scholar 

  • Webb JF (2014) Morphological diversity, evolution and development of the mechanosensory lateral line system. In: Coombs S, Bleckmann H (eds) The lateral line system. Springer, New York, pp 17–72

    Google Scholar 

  • Webb JF, Northcutt RG (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol 50:139–151

    Article  CAS  PubMed  Google Scholar 

  • Weber DD, Schiewe MH (1976) Morphology and function of the lateral line of juvenile steelhead trout in relation to gas-bubble disease. J Fish Biol 9:217–233

    Article  Google Scholar 

  • Wellenreuther MW, Brock M, Montgomery J, Clements KD (2010) Comparative morphology of the mechanosensory lateral line system in a clade of New Zealand triplefin fishes. Brain Behav Evol 75:292–308

    Article  PubMed  Google Scholar 

  • Yamamoto S, Morita K, Kikko T, Kawamura K, Sato S, Gwo J-C (2020) Phylogeography of a salmonid fish, masu salmon Oncorhynchus masou subspecies-complex, with disjunct distributions across the temperate northern Pacific. Freshw Biol 65:698–715

    Article  CAS  Google Scholar 

  • Young A, Kochenkov V, McIntyre JK, Stark JD, Coffin AB (2018) Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos. Sci Rep 8:2830. https://doi.org/10.1038/s41598-018-21209-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

G. Hardy (Ngunguru, New Zealand) read the manuscript and offered helpful comments. The staff of the Tokushibetsu and Shiribetsu field stations assisted in collecting specimens. This study was partly supported by JSPS KAKENHI Grant Number 17H03859, 19K06214 and 26840132 (to MN), and the Integrated Research Project “Adaptive trends, evolution, and modeling of organisms to respond natural and artificial environments” of the National Museum of Nature and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Nakae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 284 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakae, M., Hasegawa, K. The lateral line system and its innervation in the masu salmon Oncorhynchus masou masou (Salmonidae). Ichthyol Res 69, 362–371 (2022). https://doi.org/10.1007/s10228-021-00843-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10228-021-00843-0

Keywords

Navigation