Skip to main content
Log in

Trophic resource partitioning by sympatric ecomorphs of Schizopygopsis (Cyprinidae) in a young Pamir Mountain lake: preliminary results

  • Short Report
  • Published:
Ichthyological Research Aims and scope Submit manuscript

Abstract

Four sympatric ecomorphs – detritivorous, predator, benthivorous, and phytophagous – of the cyprinid fish Schizopygopsis stolickai were recorded in a young Pamir lake, Lake Yashilkul, located at > 3,700 m above sea level. Some ecomorphs are divergent in diet, gut length, and stable isotopes of δ13C and δ15N. The predator ecomorph has a shorter gut, and is the most enriched in δ15N (14.5‰), indicating its occupation of the highest trophic level. The lowest δ15N values (11.1‰) were detected in the detritivorous ecomorph. There was significant overlap in the diet of some individuals belonging to different ecomorphs, reflecting high trophic plasticity despite ongoing trophic specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhrorov F (2006) Benthic fauna and biological productivity of Pamir mountain lakes. Donish, Dushanbe (in Russian)

    Google Scholar 

  • Alekseyev SS, Samusenok VP, Matveev AN, Pichugin MY (2002) Diversification, sympatric speciation, and trophic polymorphism of Arctic charr, Salvelinus alpinus complex, in Transbaikalia. Env Biol Fish 64: 97–114. https://doi.org/10.1023/A:1016050018875

    Article  Google Scholar 

  • Baker JA, Cresko WA, Foster SA, Heins DC (2005) Life-history differentiation of benthic and limnetic ecotypes in a polytypic population of threespine stickleback (Gasterosteus aculeatus). Evol Ecol Res 7: 121–131

    Google Scholar 

  • Berg LS (1949) Ryby presnykh vod SSSR i sopredel’nykh stran, chast’ 2 (Freshwater Fishes of the Soviet Union and Adjacent Countries, Pt. 2). Akad. Nauk SSSR, Moscow (in Russian)

  • Chen Y, Zhang W, Hwang S (1982) Speciation in schizothoracid fishes. Acta Zool Sin 28: 217–225

    Google Scholar 

  • Dgebuadze YY, Mironovsky AN, Mendsaikhan B, Slyn’ko YV (2020) Rapid Morphological Diversification of the Cyprinid Fish Oreoleuciscus potanini (Cyprinidae) in the Course of Formation of a Reservoir in a River of the Semiarid Zone. Dokl Biol Sci 490: 85–89. https://doi.org/10.1134/S0012496620010019

    Article  Google Scholar 

  • Dimmick WW, Edds DR (2002) Evolutionary genetics of the endemic Schizorathicine (Cypriniformes: Cyprinidae) fishes of Lake Rara, Nepal. Biochem Syst Ecol 30: 919–929

    Article  CAS  Google Scholar 

  • Grishchenko EV (1984) Biology, fishery importance of false osman (Schizopygopsis stoliczkai Steind. 1888) and ways of increase of fish capacity in Pamir water bodies. PhD thesis. Moscow State University, Moscow (in Russian)

  • He D, Sui X, Sun H, Tao J, Ding C, Chen Y, Chen Y (2020) Diversity, pattern and ecological drivers of freshwater fish in China and adjacent areas. Rev Fish Biol Fisheries 30: 387–404. https://doi.org/10.1007/s11160-020-09600-4

    Article  Google Scholar 

  • Hulsey CD, Zheng J, Holzman R, Alfaro ME, Olave M, Meyer A (2018) Phylogenomics of a putatively convergent novelty: did hypertrophied lips evolve once or repeatedly in Lake Malawi cichlid fishes? BMC Evol Biol 18: 179. https://doi.org/10.1186/s12862-018-1296-9

    Article  CAS  Google Scholar 

  • Levin BA (2012) New data on morphology of the African scraping feeder Varicorhinus beso (Osteichthyes: Cyprinidae) with the special reference to specialized traits. J Ichthyol 52: 908–923. https://doi.org/10.1134/S0032945212110069

    Article  Google Scholar 

  • Levin BA, Casal‐López M, Simonov E, Dgebuadze YY, Mugue NS, Tiunov AV, Doadrio I, Golubtsov AS (2019) Adaptive radiation of barbs of the genus Labeobarbus (Cyprinidae) in an East African river. Freshw Biol 64: 1721–1736. https://doi.org/10.1111/fwb.13364

    Article  CAS  Google Scholar 

  • Levin BA, Simonov E, Dgebuadze YY, Levina M, Golubtsov AS (2020). In the rivers: Multiple adaptive radiations of cyprinid fishes (Labeobarbus) in Ethiopian Highlands. Sci Rep 10: 7192. https://doi.org/10.1038/s41598-020-64350-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Chen F, Xu D, Wang Z, Tao M (2018) Trophic interactions in the Zoige Alpine wetland on the eastern edge of the Qinghai–Tibetan Plateau inferred by stable isotopes. Limnol 19: 285–297. https://doi.org/10.1007/s10201-018-0546-2

    Article  CAS  Google Scholar 

  • Li X, Guo B (2020) Substantially adaptive potential in polyploid cyprinid fishes: evidence from biogeographic, phylogenetic and genomic studies. Proc Biol Sci 287: 20193008. https://doi.org/10.1098/rspb.2019.3008

    Article  PubMed  Google Scholar 

  • Lu G, Bernatchez L (2017) Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53: 1491–1505. https://doi.org/10.1111/j.1558-5646.1999.tb05413.x

    Article  Google Scholar 

  • Luzhin BP (1956) The Issyk Kul trout gegarkuni. Izdatelstvo Akademii Nauk Kirgizskoy SSR, Frunze (in Russian)

    Google Scholar 

  • Machado‐Schiaffino G, Kautt AF, Torres‐Dowdall J, Baumgarten L, Henning F, Meyer A (2017) Incipient speciation driven by hypertrophied lips in Midas cichlid fishes? Mol Ecol 26: 2348–2362. https://doi.org/10.1111/mec.14029

    Article  CAS  PubMed  Google Scholar 

  • Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin R, Genner MJ, Turner GF (2015) Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350: 1493–1498. https://doi.org/10.1126/science.aac9927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthes H (1963) A Comparative Study of the Feeding Mechanisms of Some African Cyprinidae (Pisces, Cypriniformes). Bijdr Dierk 33: 1–35

    Article  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x

    Article  CAS  Google Scholar 

  • Meyer A (1989) Cost of morphological specialization: feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellum. Oecol 80: 431–436. https://doi.org/10.1007/BF00379047

    Article  CAS  Google Scholar 

  • Moser FN, van Rijssel JC, Mwaiko S, Meier JI, Ngatunga B, Seehausen O (2018) The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. Proc Biol Sci 285: 20180171. https://doi.org/10.1098/rspb.2018.0171

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkas L, Oliphant MS, Iverson LK (1971) Food habits of albacore, bluefin tuna, and bonito in California waters. Fish Bull 152:1–105

    Google Scholar 

  • Popov AV (1968) Morphofunctional adaptations of the Pamir Schizopygopsis stolizkai Steind. in lake Yashil‐kul. Vopr Ikhtiol 8: 15–30 (in Russian)

    Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  Google Scholar 

  • Prince ED (1975) Pinnixid crabs in the diet of young-of-the-year copper rockfish (Sebastes caurinus). Trans Am Fish Soc 104:539–540

    Article  Google Scholar 

  • Qiao J, Hu J, Xia Q, Zhu R, Chen K, Zhao J, Yan Y, Chu L, He D (2020) Pelagic–benthic resource polymorphism in Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a headwater lake in the Salween River system on the Tibetan Plateau. Ecol Evol (in press). https://doi.org/10.1002/ece3.6470

    Article  Google Scholar 

  • Reshetnikov YS (1980) Ecology and Systematics of Coregonids. Nauka, Moscow (in Russian)

    Google Scholar 

  • Savvaitova KA, Shanin AY, Verigina IA (1988) Speciation and species structure of false osman Schizopygopsis stoliczkai in water bodies of Pamir. Vopr Ikhtiol 28: 896–906 (in Russian)

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New York.

    Google Scholar 

  • Sibbing FA, Nagelkerke LA, Stet RJ, Osse JW (1998) Speciation of endemic Lake Tana barbs (Cyprinidae, Ethiopia) driven by trophic resource partitioning; a molecular and ecomorphological approach. Aquat Ecol 32: 217–227. https://doi.org/10.1023/A:1009920522235

    Article  Google Scholar 

  • Tang Y, Li C, Wanghe K, Feng C, Tong C, Tian F, Zhao K (2019) Convergent evolution misled taxonomy in schizothoracine fishes (Cypriniformes: Cyprinidae). Mol Phylogenet Evol 134: 323–337. https://doi.org/10.1016/j.ympev.2019.01.008

    Article  PubMed  Google Scholar 

  • Terashima A (1984) Three new species of the cyprinid genus Schizothorax from Lake Rara, northwestern Nepal. Japan J Ichthyol 31: 122–135

    Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecol 136: 169–182. https://doi.org/10.1007/s00442-003-1270-z

    Article  Google Scholar 

  • Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E (2009) Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct Ecol 23: 1122–1131. https://doi.org/10.1111/j.1365-2435.2009.01589.x

    Article  Google Scholar 

  • Yang L, Sado T, Hirt MV, Pasco-Viel E, Arunachalam M, Li J, Wang X, Freyhof J, Saitoh K, Simons AM, Miya M, He S, Mayden RL (2015) Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 85: 97–116. https://doi.org/10.1016/j.ympev.2015.01.014

    Article  PubMed  Google Scholar 

  • Zandonà E, Auer SK, Kilham SS, Reznick DN (2015) Contrasting population and diet influences on gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata). PLoS One 10: e0136079. https://doi.org/10.1371/journal.pone.0136079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very thankful to O. Artaev, N. Mirzoev, and R. Thoni for their valuable help in the field, as well as to O. Artaev for photographing the fish and creating the map, and to A. Sazhnev for beetle identification. We are grateful to A. Tiunov for his support during stable isotopes analyses. Additionally, we are grateful to the staff of the National Park ‘Lake Yashilkul’ for their kind assistance. We are grateful to the two anonymous reviewers for reviews that helped to improve the manuscript. This work was supported by the Russian Science Foundation (grant no. 19-14-00218). All experimental protocols were approved by IBIW Research Ethics Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris A. Levin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 303 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarova, A.S., Rozanova, O.L. & Levin, B.A. Trophic resource partitioning by sympatric ecomorphs of Schizopygopsis (Cyprinidae) in a young Pamir Mountain lake: preliminary results. Ichthyol Res 68, 191–197 (2021). https://doi.org/10.1007/s10228-020-00773-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10228-020-00773-3

Keywords

Navigation