Skip to main content
Log in

Ex situ reproduction of Portuguese endangered cyprinids in the context of their conservation

  • News and Comments
  • Published:
Ichthyological Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Adamski P, Witkowski Z (2007) Effectiveness of population recovery projects based on captive breeding. Biol Conserv 140:1–7

    Google Scholar 

  • Almada V, Sousa-Santos C (2010) Comparisons of the genetic structure of Squalius populations (Pisces, Cyprinidae) from rivers with contrasting histories, drainage areas and climatic conditions. Mol Phylogenet Evol 57:924–931

    Google Scholar 

  • Almada VC, Pereira AM, Robalo JI, Fonseca JI, Levy A, Maia C, Valente A (2008) Mitochondrial DNA fails to reveal genetic structure in sea-lampreys along European shores. Mol Phylogenet Evol 46:391–396

    Google Scholar 

  • Arkush KD, Siri PA (2001) Exploring the role of captive broodstock programs in salmon restoration. Fish Bull Contrib Biol Cent Val Salmonids 179:319–329

    Google Scholar 

  • Bentsen HB, Olesen I (2002) Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture 204:349–359

    Google Scholar 

  • Berejikian BA (2000) Research on captive broodstock programs for Pacific Salmon. Annual Report 1999–2000. US Department of Energy, Oregon

  • Blanchet S, Páez DJ, Bernatchez L, Dodson JJ (2008) An integrated comparison of captive- bred and wild Atlantic salmon (Salmo salar): implications for supportive breeding programs. Biol Conserv 141:1989–1999

    Google Scholar 

  • Bobori DC, Economidis PS, Maurakis EG (2001) Freshwater fish habitat science and management in Greece. Aquatic Ecosyst Health 4:381–391

    Google Scholar 

  • Brook BW, Tonkyn DW, O’Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6:16

    Google Scholar 

  • Cabral MJ, Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N, Oliveira ME, Palmeirim JM, Queiroz AI, Rogado L, Santos-Reis M (eds) (2005) Portuguese red book of vertebrates. ICN, Lisboa

  • Cambray JA (1997) Captive breeding and sanctuaries for the endangered African anabantid Sandelia bainsii, the Eastern Cape rocky. Aquarium Sci Conserv 1:159–168

    Google Scholar 

  • Cardoso AC, Carrapato C (2008) Intervenção Saramugo 2008. ICNB, Mértola

  • Caro T M, Laurenson MK (1994) Ecological and genetic factors in conservation: a cautionary tale. Science 263:485–486

    Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Google Scholar 

  • Caughley G, Gunn A (1996) Conservation biology in theory and practice. Blackwell Science, Oxford

  • CIP El Palmar (2006) Report from the El Palmar ichthyological research centre activities for the Biodiversity Conservation Service. DGGMN, Valencia

  • Clavero M, Germoso V, Levin N, Kark S (2010) Geographical linkages between threats and imperilment in freshwater fish in the mediterranean basin. Divers Distrib 16:744–754

    Google Scholar 

  • Collares-Pereira MJ, Cowx I (2004) The role of catchment scale environmental management in freshwater fish conservation. Fish Manag Ecol 11:303–312

    Google Scholar 

  • Duchesne P, Bernatchez L (2002) An analytical investigation of the dynamics of inbreeding in multi-generation supportive breeding. Conserv Genet 3:47–60

    Google Scholar 

  • Duncan JR, Lockwood JL (2001) Extinction in a field of bullets: a search for causes in the decline of the world’s freshwater fishes. Biol Conserv 102:97–105

    Google Scholar 

  • Faria PJ, van Oosterhout C, Cable J (2010) Optimal release strategies for captive-bred animals in reintroduction programs: experimental infections using the guppy as a model organism. Biol Conserv 143:35–41

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

  • Gautschi B, Müller JP, Schmid B, Shykoff JA (2003) Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity 91:9–16

    Google Scholar 

  • Gil F, Sousa-Santos C, Almada V (2010) A simple and inexpensive technique for the ex-situ reproduction of critically endangered cyprinids—Achondrostoma occidentale as a case study. J World Aquacult Soc 41:661–664

    Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:630–636

    Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in Conservation Biology. Ann Rev Ecol Syst 31:139–162

    Google Scholar 

  • Hermoso V, Clavero M (2011) Threatening processes and conservation management of endemic freshwater fish in the Mediterranean Basin: a review. Mar Freshw Res 62:244–254

    Google Scholar 

  • Johnson JE, Jensen BL (1991) Hatcheries for endangered freshwater fish. In: Minckley WL, Deacon JE (eds) Battle against extinction. University of Arizona Press, Tucson, pp 199–217

  • Kitanishi S, Nishio M, Uehara K, Ogawa R, Yokoyama T, Edo K (2013) Patterns of genetic diversity of mitochondrial DNA within captive populations of the endangered itasenoara bitterling: implications for a reintroduction program. Environ Biol Fish 96:567–572

    Google Scholar 

  • Lacy RC (2000) Considering threats to the viability of small populations using individual- based models. Ecol Bull 48:39–51

    Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Google Scholar 

  • Levy A, Doadrio I, Almada VC (2009) Historical biogeography of European leuciscins (Cyprinidae): evaluating the Lago Mare dispersal hypothesis. J Biogeogr 36:55–65

    Google Scholar 

  • Ludwig A (2011) To take up the cudgels for inbreeding as tool in restoration programmes. J Appl Ichthyol 27:2–4

    Google Scholar 

  • Maitland PS, Morgan NC (2002) Conservation management of freshwater habitats—Lakes, rivers and wetlands. Kluwer Academic Publishers, Norwell

  • Näslund I (1998) Survival and dispersal of hatchery-reared brown trout, Salmo trutta, released in small streams. In: Cowx IG (ed) Stocking and introduction of fish. Fishing News Books, Oxford, pp 59–76

  • Pereira AM, Almada VC, Doadrio I (2010) Genetic relationships of brook lamprey of the genus Lampetra in a Pyrenean stream in Spain. Ichthyol Res 58:278–282

    Google Scholar 

  • Philippart JC (1992) Is captive breeding an effective solution for the conservation of endemic species? Biol Conserv 72:281–295

    Google Scholar 

  • Price EO, King JA (1968) Domestication and adaptation. In: Hafez ESE (ed) Adaptation of domestic animals. Lea and Feibiger, Philadelphia, pp 34–45

  • Robalo JI, Almada VC, Sousa-Santos C, Moreira I, Doadrio I (2005) Chondrostoma occidentale, a new species of the genus Chondrostoma Agassiz, 1832 (Actynopterigii, Cyprinidae) from western Portugal. Graellsia 61:19–29

    Google Scholar 

  • Robalo JI, Sousa-Santos C, Almada VC, Doadrio I (2006a) Paleobiogeography of two Iberian endemic cyprinid fishes (Chondrostoma arcasii-Chondrostoma macrolepidotus) inferred from mitochondrial sequence data. J Hered 97:143–149

    Google Scholar 

  • Robalo JI, Sousa-Santos C, Levy A, Almada VC (2006b) Molecular insights on the taxonomic position of the paternal ancestor of the Squalius alburnoides hybridogenetic complex. Mol Phylogenet Evol 39:276–281

  • Robalo JI, Doadrio I, Valente A, Almada VC (2007a) Identification of ESUs in the critically endangered Portuguese minnow Chondrostoma lusitanicum Collares-Pereira 1980, based on a phylogeographical analysis. Conserv Genet 8:1225–1229

    Google Scholar 

  • Robalo JI, Almada VC, Levy A, Doadrio I (2007b) Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol Phylogenet Evol 42:362–372

    Google Scholar 

  • Robert A (2009) Captive breeding genetics and reintroduction success. Biol Conserv 142:2915–2922

    Google Scholar 

  • Saura M, Pérez-Figueroa A, Fernández J, Toro MA, Caballero A (2008) Preserving population allele frequencies in ex situ conservation programs. Conserv Biol 22:1277–1287

    Google Scholar 

  • Schönhuth S, Luikart G, Doadrio I (2003) Effects of a founder event and supplementary introductions on genetic variation in a captive breeding population of the endangered Spanish killifish. J Fish Biol 63:1538–1551

    Google Scholar 

  • Snyder NFR, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD, Miller B (1999) Limitations of captive breeding in endangered species recovery. Conserv Biol 10:338–348

    Google Scholar 

  • Sousa V, Penha F, Collares-Pereira MJ, Chikhi L, Coelho MM (2008) Genetic structure and signature of population decrease in the critically endangered freshwater cyprinid Chondrostoma lusitanicum. Conserv Genet 9:791–805

    Google Scholar 

  • Sousa-Santos C, Collares-Pereira MJ, Almada VC (2006) Evidence of extensive mitochondrial introgression with nearly complete substitution of the typical Squalius pyrenaicus-like mtDNA of the Squalius alburnoides complex (Cyprinidae) in an independent Iberian drainage. J Fish Biol 68(Suppl B):292–30

    Google Scholar 

  • Sousa-Santos C, Collares-Pereira MJ, Almada VC (2007) Reading the history of a hybrid fish complex from its molecular record. Mol Phylogenet Evol 45:981–996

    Google Scholar 

  • Sousa-Santos C, Robalo J, Santos JM, Branco P, Ferreira T, Sousa M, Ramos A, Castilho R, Doadrio I, Almada V (2013) Atlas Genético Nacional dos peixes ciprinídeos nativos. Electronic publication available at http://www.fishatlas.net

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. P Natl Acad Sci-Biol 101:15261–15264

    Google Scholar 

  • Wang JL, Ryman N (2001) Genetic effects of multiple generations of supportive breeding. Conserv Biol 15:1619–1631

    Google Scholar 

  • Ward RD (2006) The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fish Res 80:9–18

    Google Scholar 

  • Williams SE, Hoffman EA (2009) Minimizing genetic adaptation in captive breeding programs: a review. Biol Conserv 142:2388–2400

    Google Scholar 

  • Witzenberger KA, Hochkirch A (2011) Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv 20:1843–1861

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the staff of the Vasco da Gama’s Aquarium and of the Campelo Station/Quercus Team for their help in the maintenance and feeding of the fish; to Pedro Coelho, Cristina Lima and Fernando Roneberg for their help during fish captures; to Francisco Caruana for information on Spanish fish ex situ reproduction programs; and to Joana Robalo and André Levy for the revision of the manuscript. This study was funded by the FCT Pluriannual Program (UI&D 331/94, partially FEDER funded) and by the FCT project PTDC/AAC-CLI/103110/2008. C. Sousa-Santos was supported by a post-doctoral grant from FCT (SFRH/BPD/29774/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Sousa-Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196 kb)

Supplementary material 2 (DOCX 14 kb)

About this article

Cite this article

Sousa-Santos, C., Gil, F. & Almada, V.C. Ex situ reproduction of Portuguese endangered cyprinids in the context of their conservation. Ichthyol Res 61, 193–198 (2014). https://doi.org/10.1007/s10228-013-0383-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10228-013-0383-6

Keywords

Navigation