Skip to main content
Log in

Molecular identification of Pampus fishes (Perciformes, Stromateidae)

Ichthyological Research Aims and scope Submit manuscript

Abstract

Concerning the nomenclature, most problems arise from the great confusion due to the morphological similarities in Pampus. Twenty-five individuals in Pampus were sampled from different localities about 2,000 km apart along the coast of China covering the Yellow Sea, the East China Sea and the South China Sea. The sequences of cytochrome c oxidase I (COI) and 16S rRNA (16S) genes of the mitogenomes were determined. Combined with the morphological characteristics, five Pampus species, P. minor, P. punctatissimus, P. chinensis, P. cinereus and Pampus sp., were identified. The genetic distance of intraspecies ranged from 0.000 to 0.004, while it varied from 0.012 to 0.133 for interspecies based on the 16S sequences. For COI sequence data analysis, the genetic distance of intraspecies ranged from 0.000 to 0.005, while it varied from 0.057 to 0.162 for interspecies. Phylogenetic trees showed that all Pampus fishes reciprocally constituted a monophyletic group with strong support. The sister-group relationships between P. minor and Pampus sp. and between P. chinensis and P. punctatissimus were revealed respectively. In the current GenBank data, P. minor is considered P. cinereus or P. argenteus by mistake. For the lack of a P. echinogaster specimen, we cannot decide on the name of Pampus sp. as P. argenteus or P. echinogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bloch ME (1793) Naturgeschichte der Ausländischen Fische. Siebenter Theil, Berlin 12:9

    Google Scholar 

  • Bucklin A, Guarnieri M, Hill RS, Bentley AM, Kaartvedt S (1999) Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401:239–254

    Article  CAS  Google Scholar 

  • Cheng QT (1962) Stromateidae, the fishes of South China Sea. Science Press, Beijing

    Google Scholar 

  • Cheng QT, Yang WH (1963) Stromateidae, the fishes of East China Sea. Science Press, Beijing

    Google Scholar 

  • Cheng QT, Zheng BS (1987) Systematic synopsis of Chinese fishes. Science Press, Beijing

    Google Scholar 

  • Deng SM, Xiong GQ, Zhan HX (1981) The preliminary study on the classification of Stromateoidei of China. In: Zhang ZQ (ed) Ichthyological thesis (No. 2). Science Press, Beijing, pp 25–38

    Google Scholar 

  • Doiuchi R, Nakabo T (2006) Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses. Mol Phylogenet Evol 39:111–123

    Article  CAS  PubMed  Google Scholar 

  • Euphrasen BA (1788) Beskrifning på trenne fiskar. Vensk Akad Nya Handl, Stockholm 9:51–55

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fowler HL (1972) A synopsis of the fishes of China. Antiquariaat Junk Netherlands 1:296–305

    Google Scholar 

  • Haedrich RL (1967) The stromateoid fishes: systematics and a classification. Bull Mus Comp Zool 135:31–139

    Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971

    Article  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Iguchi A, Ito H, Ueno M, Maeda T, Minami T, Hayashi I (2007) Molecular phylogeny of the deep-sea Buccinum species (Gastropoda: Buccinidae) around Japan: inter- and intraspecific relationships inferred from mitochondrial 16SrRNA sequences. Mol Phylogenet Evol 44:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Kartavtsev YP, Jung SO, Lee YM, Byeon HK, Lee JS (2007) Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae): genome description and phylogenetic considerations inferred from the Cyt b and 16S rRNA genes. Gene 396:13–27

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, Lindstrom SC, Saunders GW (2007) A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol Phylogenet Evol 44:634–648

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li CS (1998) A new pomfret species, Pampus minor sp. nov. Chin J Oceanol Limnol 16:280–285

    Article  Google Scholar 

  • Liu J, You F, Li CS (1999) Zymogram characters of genus Pampus (Pisces: Stromateidae) from the coast of China. Marine Sciences 5:31–34

    Google Scholar 

  • Liu J, Li CS, Li XS (2002) Studies on Chinese pomfret fishes of the genus Pampus (Pisces: Stromateidae). Studia Marina Sinica 44:240–252

    Google Scholar 

  • May RM (1988) How many species are there on earth. Science 241:1441–1449

    Article  PubMed  Google Scholar 

  • Nakabo T (1993) Fishes of Japan with pictorial keys to the species. Tokai University Press, Tokyo

    Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer & Associates Inc, Sunderland, Massachusetts, pp 205–247

    Google Scholar 

  • Pfunder M, Holzgang O, Frey JE (2004) Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol Ecol 13:1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Stepien CA, Kocher TD (1997) Moleculars and morphology in studies of fish evolution. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, San Diego, pp 1–11

    Chapter  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony, version 4.10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1597

    Article  CAS  PubMed  Google Scholar 

  • Tavares ES, Baker AJ (2008) Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 8:81

    Article  PubMed  Google Scholar 

  • Thalmann O, Hebler J, Poinar HN, Pääbo S, Vigilant L (2004) Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Timm J, Figiel M, Kochzius M (2008) Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity. Mol Phylogenet Evol 49:268–276

    Article  CAS  PubMed  Google Scholar 

  • Ursvik A, Breines R, Christiansen JS, Fevolden S-E, Coucheron DH, Johansen SD (2007) A mitogenomic approach to the taxonomy of pollocks: Theragra chalcogramma and T. wnnmarchica represent one single species. BMC Evol Biol 7:87

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B Biol Sci 360:1847–1857

    Article  CAS  Google Scholar 

  • Wu HL (1985) Stromateidae. fishes of the Fujian regional fauna. Fujian Science Press, Fujian, pp 430–436

    Google Scholar 

  • Yamada U (1986) Fishes of the East China Sea and the Yellow Sea. Seikai National Fisheries Research Laboratory, Nagasaki

    Google Scholar 

  • Yamada U, Shirai S, Irie T, Torimura M, Deng SM, Zheng YJ, Li CS, Yong UK, Young SK (1995) Names and illustrations of fishes from the East China Sea and the Yellow Sea– Japanese-Chinese-Korean-Overseas Fishery Cooperation Foundation

  • Zhang FY, Ma LB, Shi ZH, Ma CY (2008) Sequence variation and molecular phylogeny of mitochondrial COI gene segments from three pomfret species. J Fish Sci China 3:392–399

    Google Scholar 

Download references

Acknowledgments

Maochang Ding and Chunlin Wang collected the samples. This research was supported by a grant from the National Natural Science Foundation of China (40676085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendices Tables S1–S3 (DOC 135 kb)

About this article

Cite this article

Cui, Z., Liu, Y., Liu, J. et al. Molecular identification of Pampus fishes (Perciformes, Stromateidae). Ichthyol Res 57, 32–39 (2010). https://doi.org/10.1007/s10228-009-0119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10228-009-0119-9

Keywords

Navigation