Skip to main content
Log in

Cytokine and Growth Factor mRNA Expression Patterns Associated with the Hypercontracted, Hyperpigmented Healing Phenotype of Red Duroc Pigs: A Model of Abnormal Human Scar Development?

  • Basic/Clinical Science
  • Published:
Journal of Cutaneous Medicine and Surgery

Abstract

Background

Skin wounds in red Duroc pigs heal with the formation of hypercontractile, hyperpigmented scars, similar in some respects to human hypertrophic scars.

Objective

The goal of this study was to characterize the mRNA expression patterns for a subset of relevant cytokines, growth factors, receptors, and transcription factors involved in the red Duroc scarring phenotype.

Methods

Full-thickness and deep dermal wounds were created on the backs of juvenile female red Duroc pigs. Samples were taken every two weeks postwounding and total RNA and DNA were extracted and quantified. RT-PCR was performed using porcine gene-specific primers for 15 relevant molecules.

Results

The majority of molecules examined exhibited a biphasic pattern of expression, with peaks of expression at days 14 and 56 postinjury.

Conclusions

The molecular expression pattern observed correlates well with the gross healing phenotype and matrix molecule expression patterns previously reported in red Duroc pigs. These findings enhance our understanding of the processes associated with fibroproliferative scar-formation.

Antécédents

Les lésions cutanées chez les cochons rouges Duroc guérissent grâce à la formation de cicatrices hypercontractiles et hyperpigmentées, similaires à certains égards aux cicatrices hypertrophiques chez les sujets humains.

Objectifs

Caractériser I’expression de I’ARNm d’un sous-ensemble de cytokines, de facteurs de croissance, de récepteurs et de facteurs de transmission sous-jacents aux phénotypes des cicatrices chez le cochon rouge Duroc.

Méthodes

Des blessures cutanées profondes ont été créées sur le dos de jeunes femelles du cochon rouge Duroc. Des échantillons ont été prélevés toutes les deux semaines et I’ADN et I’ARN ont été tirés et quantifiés. Une RT-PCR a été pratiquée sur 15 molécules au moyen d’amorces spécifiques aux génes porcins.

Résultats

La majorité des molécules examinées ont révélé un schéma d’expression biphasique, avec une intensification de l’expression aux journées 14 et 56 suivant la blessure.

Conclusions

Le schéma d’expression moléculaire observé correspond aux schémas d’expression des molécules de la matrice et des phénotypes de cicatrisation déjà rapportés chez les cochons rouges Duroc. Ces résultats améliorent notre compréhension du processus de formation des cicatrices fibroproliferatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Marneros AG, Norris JE, Olsen BR, et al. Clinical genetics of familial keloids. Arch Dermatol 2001; 137:1429–1434

    PubMed  CAS  Google Scholar 

  2. Hayward PG, Robson MC. Animal models of wound contraction. Prog Clin Biol Res 1991; 365:301–312

    PubMed  CAS  Google Scholar 

  3. Gallant CL, Olson ME, Hart DA. Molecular, histologic, and gross phenotype of skin wound healing in red Duroc pigs reveals an abnormal healing phenorype of hypercontracted, hyperpigmented scarring. Wound Repair Regen 2004; 12:305–319

    Article  PubMed  Google Scholar 

  4. Gallant–Behm CL, Hart DA. Genetic analysis of skin wound healing and scarring in a porcine model. Wound Repair Regen 2005; accepted for publication.

  5. Silverstein P, Goodwin M, Raulston G, et al. Hypertrophic scar in the experimental animal: In: the ultrastructure of collagen. City: publisher, 1973, pp 213–236.

  6. Zhu KQ, Engrav LH, Gibran NS, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns 2003; 29:649–664

    Article  PubMed  Google Scholar 

  7. Wang JF, Olson ME, Reno CR, et al. Molecular and cell biology of skin wound healing in a pig model. Connect Tissue Res 2000; 41:195–211

    PubMed  CAS  Google Scholar 

  8. Wang JF, Olson ME, Reno CR, et al. The pig as a model for excisional skin wound healing: Characterization of the molecular and cellular biology, and bacteriology of the healing process. Compar Med 2001; 51:341–348

    CAS  Google Scholar 

  9. Agren MS. Gelatinase activity during wound healing. Br J Dermatol 1994; 131:634–640

    Article  PubMed  CAS  Google Scholar 

  10. Agren MS, Taplin CJ, Woessner JF Jr, et al. Collagenase in wound healing: effect of wound age and type. J Invest Dermatol 1992; 99:709–714

    Article  PubMed  CAS  Google Scholar 

  11. Breuing K, Andree C, Helo G, et al. Growth factors in the repair of partial thickness porcine skin wounds. Plast Reconstr Surg 1997; 100:657–664

    PubMed  CAS  Google Scholar 

  12. Olson ME, Wright JB, Lam K, et al. Healing of porcine donor sites covered with silver-coated dressings. Eur J Surg 2000; 166:486–489

    Article  PubMed  CAS  Google Scholar 

  13. Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am 1997; 77:509–528

    Article  PubMed  CAS  Google Scholar 

  14. Tredget E, Nedelec B, Scott P, et al. Hypertrophic scars, keloids, contractures: The cellular and molecular basis for therapy. Surg Clin North Am 1997;77:701–729

    Article  PubMed  CAS  Google Scholar 

  15. Polo M, Ko F, Busillo F, et al. The 1997 Moyer Award, Cytokine production in patients with hypertrophic burn scars. J Burn Care Rehabil 1997; 18:477–482

    PubMed  CAS  Google Scholar 

  16. Ghahary A, Shen YJ, Nedelec B, et al. Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-1. J Invest Dermatol 1996; 106:476–481

    Article  PubMed  CAS  Google Scholar 

  17. Ghahary A, Shen YJ, Nedelec B, et al. Enhanced expression of mRNA for insulin-like growth factor-1 in post-burn hypertrophic scar tissue and its fibrogenic role by dermal fibroblasts. Mol Cell Biochem 1995; 148:25–32

    Article  PubMed  CAS  Google Scholar 

  18. Chou DH, Lee W, McCulloch CA. TNF-alpha inactivation of collagen receptors: implications for fibroblast function and fibrosis. J Immunol 1996; 156:4354–4362

    PubMed  CAS  Google Scholar 

  19. Duncan MR, Frazier KS, Abramson S, et al. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 1999; 13:1774–1786

    PubMed  CAS  Google Scholar 

  20. Bettinger DA, Yager DR, Diegelmann RF, et al. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 1996; 98:827–833

    PubMed  CAS  Google Scholar 

  21. Harada T, Izaki S, Tsutsumi H, et al. Apoptosis of hair follicle cells in the second-degree burn wound under hypernatremic conditions. Burns 1998; 24:464–469

    Article  PubMed  CAS  Google Scholar 

  22. Lipman JM. Fluorophotometric quantitation of DNA in articular cartilage utilizing Hoechst 33258. Anal Biochem 1989; 176:128–131

    Article  PubMed  CAS  Google Scholar 

  23. Hellio Le Graverand MP, Reno C, Hart DA. Influence of pregnancy on gene expression in rabbit articular cartilage. Osteoarthritis Cartilage 1998; 6:341–350

    Article  PubMed  CAS  Google Scholar 

  24. Reno C, Marchuk L, Sciore P, et al. Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. Biotechniques 1997; 22:1082–1086

    PubMed  CAS  Google Scholar 

  25. Schmidt DM, Ernst JD. A fluorometric assay for the quantification of RNA in solution with nanogram sensitivity. Anal Biochem 1995; 232:144–146

    Article  PubMed  CAS  Google Scholar 

  26. Sciore P, Boykiw R, Hart DA. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. J Orthop Res 1998; 16:429–437

    Article  PubMed  CAS  Google Scholar 

  27. Reno C, Boykiw R, Martinez ML, et al. Temporal alterations in mRNA levels for proteinases and inhibitors and their potential regulators in the healing medial collateral ligament. Biochem Biophys Res Commun 1998; 252:757–763

    Article  PubMed  CAS  Google Scholar 

  28. Boykiw R, Sciore P, Reno C, et al. Altered levels of extracellular matrix molecule mRNA in healing rabbit ligaments. Matrix Biol 1998; 17:371–378

    Article  PubMed  CAS  Google Scholar 

  29. Soutar RL, Dillon J, Ralston SH. Control genes for reverse-transcription–polymerase chain reaction: a comparison of beta actin and glyceraldehyde phosphate dehydrogenase. Br J Haematol 1997; 97:247–248

    PubMed  CAS  Google Scholar 

  30. Teofoli P, Barduagni S, Ribuffo M, et al. Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J Dermatol Sci 1999; 22:31–37

    Article  PubMed  CAS  Google Scholar 

  31. Vincenti MP, White LA, Schroen DJ, et al. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr 1996; 6:391–411

    PubMed  CAS  Google Scholar 

  32. Perez RL, Ritzenthaler JD, Roman J. Transcriptional regulation of the interleukin-1beta promoter via fibrinogen engagement of the CD18 integrin receptor. Am J Respir Cell Mol Biol 1999; 20:1059–1066

    PubMed  CAS  Google Scholar 

  33. Bailly S, Fay M, Israel N, et al. The transcription factor AP-1 binds to the human interleukin 1 alpha promoter. Eur Cytokine Netw 1996; 7:125–128

    PubMed  CAS  Google Scholar 

  34. Lee YR, Oshita Y, Tsuboi R, et al. Combination of insulin-like growth factor (IGF)-I and IGF-binding protein-1 promotes fibroblast-embedded collagen gel contraction. Endocrinology 1996; 137:5278–5283

    Article  PubMed  CAS  Google Scholar 

  35. Russell SB, Trupin JS, Myers JC, et al. Differential glucocorticoid regulation of collagen mRNAs in human dermal fibroblasts. Keloid-derived and fetal fibroblasts are refractory to down-regulation. J Biol Chem 1989;264:13730–13735

    PubMed  CAS  Google Scholar 

  36. Gallucci RM, Sugawara T, Yucesoy B, et al. Interleukin-6 treatment augments cutaneous wound healing in immunosuppressed mice. J Interferon Cytokine Res 2001; 21:603–609

    Article  PubMed  CAS  Google Scholar 

  37. Slavin J, Unemori E, Hunt TK, et al. Transforming growth factor beta (TGF-beta) and dexamethasone have direct opposing effects on collagen metabolism in low passage human dermal fibroblasts in vitro. Growth Factors 1994; 11:205–213

    PubMed  CAS  Google Scholar 

  38. Zhu KQ, Engrav LH, Tamura RN, et al. Further similarities between cutaneous scarring in the female, red Duroc pig and human hypertrophic scarring. Burns 2004;30:518–530

    Article  PubMed  Google Scholar 

  39. Sasaki H, Sato T, Yamauchi N, et al. Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immunol 2002; 168:5178–5183

    PubMed  CAS  Google Scholar 

  40. Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 2000; 12:671–676

    Article  PubMed  CAS  Google Scholar 

  41. Gallucci RM, Simeonova PP, Matheson JM, et al. Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J 2000; 14:2525–2531

    Article  PubMed  CAS  Google Scholar 

  42. Lee DJ, Rosenfeldt H, Grinnell F. Activation of ERK and p38 MAP kinases in human fibroblasts during collagen matrix contraction. Exp Cell Res 2000; 257:190–197

    Article  PubMed  CAS  Google Scholar 

  43. Tock J, Van Putten V, Stenmark KR, et al. Induction of SM-alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem Biophys Res Commun 2003; 301:1116–1121

    Article  PubMed  CAS  Google Scholar 

  44. Varghese S, Rydziel S, Canalis E. Basic fibroblast growth factor stimulates collagenase-3 promoter activity in osteoblasts through an activator protein-1-binding site. Endocrinology 2000; 141:2185–2191

    Article  PubMed  CAS  Google Scholar 

  45. Akimoto S, Ishikawa O, Iijima C, et al. Expression of basic fibroblast growth factor and its receptor by fibroblast, macrophages and mast cells in hypertrophic scar. Eur J Dermatol 1999; 9:357–362

    PubMed  CAS  Google Scholar 

  46. Kaneko T, Fujii S, Matsumoto A, et al. Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Arterioscler Thromb Vasc Biol 2002; 22:855–860

    Article  PubMed  CAS  Google Scholar 

  47. Ono I. The effects of basic fibroblast growth factor (bFGF) on the breaking strength of acute incisional wounds. J Dermatol Sci 2002; 29:104–113

    Article  PubMed  CAS  Google Scholar 

  48. Huang JS, Wang YH, Ling TY, et al. Synthetic TGF-beta antagonist accelerates wound healing and reduces scarring. FASEB J 2002; 16:1269–1270

    PubMed  CAS  Google Scholar 

  49. Daniels JT, Schultz GS, Blalock TD, et al. Mediation of transforming growth factor-beta(1)-stimulated matrix contraction by fibroblasts: a role for connective tissue growth factor in contractile scarring. Am J Pathol 2003; 163:2043–2052

    PubMed  CAS  Google Scholar 

  50. Yang CC, Lin SD, Yu HS. Effect of growth factors on dermal fibroblast contraction in normal skin and hypertrophic scar. J Dermatol Sci 1997; 14:162–169

    Article  PubMed  CAS  Google Scholar 

  51. Liu XD, Umino T, Ertl R, et al. Persistence of TGF-beta1 induction of increased fibroblast contractility. In Vitro Cell Dev Biol Anim 2001; 37:193–201

    Article  PubMed  CAS  Google Scholar 

  52. Han YP, Nien YD, Garner WL. Recombinant human platelet-derived growth factor and transforming growth factor-beta mediated contraction of human dermal fibroblast populated lattices is inhibited by Rho/GTPase inhibitor but does not require phosphatidylinositol-3′ kinase. Wound Repair Regen 2002; 10:169–176

    Article  PubMed  Google Scholar 

  53. Vaughan MB, Howard EW, Tomasek JJ. Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 2000; 257:180–189

    Article  PubMed  CAS  Google Scholar 

  54. Evans RA, Tian YC, Steadman R, et al. TGF-beta1 -mediated fibroblast–myofibroblast terminal differentiation—the role of Smad proteins. Exp Cell Res 2003; 282:90–100

    Article  PubMed  CAS  Google Scholar 

  55. Ghahary A, Shen YJ, Wang R, et al. Expression and localization of insulin-like growth factor-1 in normal and post-burn hypertrophic scar tissue in human. Mol Cell Biochem 1998; 183:1–9

    Article  PubMed  CAS  Google Scholar 

  56. Hyde C, Hollier B, Anderson A, et al. Insulin-like growth factors (IGF) and IGF-binding proteins bound to vitronectin enhance keratinocyte protein synthesis and migration. J Invest Dermatol 2004; 122:1198–1206

    Article  PubMed  CAS  Google Scholar 

  57. Braun S, Hanselmann C, Gassmann MG, et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 2002; 22:5492–5505

    Article  PubMed  CAS  Google Scholar 

  58. Latkowski JM, Freedberg IM, Blumenberg M. Keratinocyte growth factor and keratin gene regulation. J Dermatol Sci 1995; 9:36–44

    Article  PubMed  CAS  Google Scholar 

  59. Fryer RM, Randall J, Yoshida T, et al. Global analysis of gene expression: methods, interpretation, and pitfalls. Exp Nephrol 2002; 10:64–74

    Article  PubMed  CAS  Google Scholar 

  60. Santagnati S, Garnier M, Carlo P, et al. Quantitation of low abundance mRNAs in glial cells using different polymerase chain reaction (PCR-) based methods. Brain Res Brain Res Protoc 1997; 1:217–223

    Article  Google Scholar 

  61. Wang JF, Olson ME, Winkfein RJ, et al. Molecular and cell biology of porcine HSP47 during wound healing: complete cDNA sequence and regulation of gene expression. Wound Repair Regen 2002; 10:230–240

    Article  PubMed  Google Scholar 

  62. Hellio le Graverand MP, Eggerer J, Sciore P, et al. Matrix metalloproteinase-13 expression in rabbit knee joint connective tissues: influences of maturation and response to injury. Matrix Biol 2000; 19:431–441

    Article  PubMed  CAS  Google Scholar 

  63. Murphy PG, Loitz BJ, Frank CB, et al. Influences of exogenous growth factors on the synthesis and secretion of collagen type I and III by explants of normal and healing rabbit ligaments. Biochem Cell Biol 1994; 72:403–409

    Article  PubMed  CAS  Google Scholar 

  64. Wang JF, Olson ME, Ball DK, et al. Recombinant connective tissue growth factor modulates porcine skin fibroblast gene expression. Wound Repair Regen 2003; 11:220–229

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jian-Fei Wang, Carol Reno, and Helen Tsao for their expert assistance with these studies, and Dr. Régine Mydlarski (Division of Dermatology, Department of Medicine, University of Calgary) for manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hart.

Additional information

CLGB was supported by a Natural Sciences and Engineering Research Council (NSERC)-Industry studentship in conjunction with Nucryst Pharmaceuticals, Fort Saskatchewan, Alberta, Canada. DAH is the Calgary Foundation–Grace Glaum Professor in Arthritis Research. These studies were supported by the Canadian Institutes for Health Research (CIHR) Institute for Gender and Health and funds from the Professorship to DAH.

About this article

Cite this article

Gallant–Behm, C.L., Olson, M.E. & Hart, D.A. Cytokine and Growth Factor mRNA Expression Patterns Associated with the Hypercontracted, Hyperpigmented Healing Phenotype of Red Duroc Pigs: A Model of Abnormal Human Scar Development?. J Cutan Med Surg 9, 165–177 (2005). https://doi.org/10.1007/s10227-005-0105-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10227-005-0105-4

Keywords

Navigation