Extracorporeal Photopheresis Differentially Regulates the Expression of Phosphorylated STAT-1 and STAT-5 in Treated Monocytes and T cells, Respectively

  • John BladonEmail author
  • Peter Taylor
Basic/Clinical Science



Extracorporeal photopheresis (ECP) is effective in conditions with opposing immune etiology. ECP induces an immunomodulatory response through simultaneous monocyte activation and apoptosis induction of lymphocytes. However, ECP is also immunosuppressive, downregulating proinflammatory cytokines. Signal transducers and activators of transcription (STATs) are important mediators of cell-signaling systems, including cytokines. Ultraviolet (UV) immunosuppression is linked to reductions in cytokine-induced STAT phosphorylation.


The aim of this study was to find whether ECP downregulates STAT phosphorylation.


Pre- and post-ECP mononuclear cells from cutaneous T-cell lymphoma and chronic graft-versus-host disease patients were stimulated with either IFNβ, IL2, or IL15. The percentage of IFNβ-stimulated monocytes positive for phosphorylated STAT-1 (pSTAT-1) and the number of IL2- and IL15-stimulated T cells expressing phosphorylated STAT-5 (pSTAT-5) were determined at 0 and 24 h.


Post-ECP, pSTAT-1 levels in monocytes remained unchanged; however, at 24 h post-ECP the number of T cells expressing pSTAT-5 was reduced.


Following ECP, monocytes retain their ability to phosphorylate STAT-1, while pSTAT-5 expression is lost in lymphocytes. This differential effect of ECP may account for the diverse population of diseases that benefit.


Chronic GvHD Apoptotic Lymphocyte Pretransplant Conditioning Extracorporeal Photopheresis CTCL Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



La photophérèse extracorporelle est efficace en présence de conditions ayant une étiologie immunitaire. La photophérèse extracorporelle produit une réponse immunomodulatrice grâce à, simultanément, une activation des monocytes et une induction de l’apoptose dans les lymphocytes. Toutefois, la photophérèse extracorporelle a également des caractéristiques immunosuppressives qui régularisent à la baisse les cytokines proinflammatoires. Les signaux transducteurs et activateurs de la transcription (STAT) sont d’importants médiateurs des systémes de signalisation cellulaire, y compris les cytokines. L’immunosuppression par rayons UV est liée à une réduction de la phosphorylation des STAT causée par les cytokines.


Découvrir si la photophérèse extracorporelle régularise à la baisse la phosphorylation des STAT.


Des cellules mononucléaires, pré et post photophérèse extracorporelle, prises de lymphomes T et de greffes chroniques ont été stimulées par IFNβ, IL2 ou IL15. Le pourcentage de monocytes stimulés au IFNβ qui ont exprimé des STAT-1 phosphorylés (pSTAT-1) et le nombre de cellules T stimulées au IL2 et au IL15qui ont exprimé des STAT-5 phosphorylés (pSTAT-5) ont été prélevés aux heures 0 et 24.


Le niveau de monocytes pSTAT-1 post-photophérèse extracorporelle est resté inchangé; 24 heures après la photophérèse extracorporelle, le nombre de cellules T exprimant pSTAT-5 a baissé.


À la suite de la photophérèse extracorporelle, les monocytes conservent leur capacité de phosphoryler STAT-1, alors que l’expression de pSTAT-5 se perd en lymphocytes. Cet effet différentiel de la photophérèse extracorporelle pourrait expliquer le nombre variant de maladies qui en profitent.



We would like to thank Dr. A. MacWhannel, Prof. N.H. Russell, Dr. S. Littlewood, Dr. G. Cook, Dr. P. Mahendra, Dr. J. Snowdon, and Dr. E. Bessell for referring patients to the photopheresis unit at Rotherham General Hospital. Thanks also go to Barry Farmer for helping prepare the illustrations and to all the patients and nursing staff of the photopheresis unit for their assistance with this study.


  1. 1.
    Edelson, R, Berger, C, Gasparro, F,  et al. 1987Treatment of cutaneous T cell lymphoma by extracorporeal photochemotherapy: Preliminary resultsN Engl J Med316297303PubMedGoogle Scholar
  2. 2.
    Richter, HI, Stege, H, Ruzicka, T,  et al. 1997Extracorporeal photopheresis in the treatment of acute graft-versus-host diseaseJ Am Acad Dermatol36787789Google Scholar
  3. 3.
    Owsianowski, M, Gollnick, H, Siegert, W,  et al. 1994Successful treatment of chronic graft-versus-host disease with extracorporeal photopheresisBone Marrow Transplant14845848PubMedGoogle Scholar
  4. 4.
    Diamandidou, E, Cohen, PR, Kurzock, R. 1996Mycosis fungoides and Sezary syndromeBlood8823852409PubMedGoogle Scholar
  5. 5.
    Vowels, BR, Lessin, SR, Cassin, M,  et al. 1994Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphomaJ Invest Dermatol103669673CrossRefPubMedGoogle Scholar
  6. 6.
    Ochs, LA, Blazar, BR, Ror, J,  et al. 1996Cytokine expression in human cutaneous chronic graft-versus-host diseaseBone Marrow Transplant1710851092PubMedGoogle Scholar
  7. 7.
    Parkman, R. 1998Chronic graft-versus-host diseaseCurr Opin Hematol52225PubMedGoogle Scholar
  8. 8.
    Perez, M, Edelson, RL, Laroche, L,  et al. 1989Inhibition of antiskin allograft immunity by infusion with syngenic photoinactivated effector lymphocytesJ Invest Dermatol92669676CrossRefPubMedGoogle Scholar
  9. 9.
    Gottlieb, SL, Wolfe, JT, Fox, FE,  et al. 1996Treatment of cutaneous T-cell lymphoma with extracorporeal photopheresis monotherapy and in combination with recombinant interferon alfa: A 10-year experience at a single institutionJ Am Acad Dermatol35946957Google Scholar
  10. 10.
    Zouboulis, CC, Schmuth, M, Doepfmer, S,  et al. 1998Extracorporeal photopheresis of cutaneous T-cell lymphoma is associated with reduction of peripheral CD4+ T lymphocytesDermatology196305308Google Scholar
  11. 11.
    Yoo, EK, Rook, AH, Elenitsas, R,  et al. 1996Apoptosis induction by ultraviolet light A and photochemotherapy in cutaneous T-cell lymphoma: Relevance to mechanism of therapeutic actionJ Invest Dermatol107235242CrossRefPubMedGoogle Scholar
  12. 12.
    Bladon, J, Taylor, PC. 1999Extracorporeal photopheresis induces apoptosis in the lymphocytes of cutaneous T cell lymphoma and graft versus host disease patientsBr J Haematol107707711CrossRefPubMedGoogle Scholar
  13. 13.
    Hanlon, DJ, Berger, CL, Edelson, RL. 1998Photoactivated 8-methoxypsoralen treatment causes a peptide-dependent increase in antigen display by transformed lymphocytesInt J Cancer787075CrossRefPubMedGoogle Scholar
  14. 14.
    Berger, CL, Xu, AL, Hanlon, D,  et al. 2001Induction of human tumor-loaded dendritic cellsInt J Cancer91438447CrossRefPubMedGoogle Scholar
  15. 15.
    Tokura, Y, Seo, N, Yagi, H,  et al. 1999Treatment of T lymphocytes with 8-methoxypsoralen plus ultraviolet A induces transient but biologically active Th1-skewing cytokine productionJ Invest Dermatol113202208CrossRefPubMedGoogle Scholar
  16. 16.
    Vowels, BR, Cassin, M, Boufal, MH,  et al. 1992Extracorporeal photochemotherapy induces the production of tumour necrosis factor-α by monocytes: implications for the treatment of cutaneous T-cell lymphoma and systemic sclerosisJ Invest Dermatol98686692CrossRefPubMedGoogle Scholar
  17. 17.
    Hori, K, Ehrke, MJ, Mace, K,  et al. 1987Effect of recombinant tumor necrosis factor on tumoricidal activation of murine macrophages: synergism between tumor necrosis factor and β-interferonCan Res4758685874Google Scholar
  18. 18.
    Seo, N, Tokura, Y, Matsumoto, K,  et al. 1998Tumor-specific cytotoxic T-lymphocyte activity in Th2 type-Sezary syndrome: its enhancement by interferon-β and interleukin-12 and fluctuations in association with the disease activityClin Exp Immunol112403409CrossRefPubMedGoogle Scholar
  19. 19.
    Krenger, W, Ferrara, JL. 1996Dysregulation of cytokines during graft-versus-host diseaseJ Hematother5314PubMedGoogle Scholar
  20. 20.
    Xun, CQ, Thompson, JS, Jennings, CD,  et al. 1994Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H2-incompatible transplanted SCID miceBlood8323602367PubMedGoogle Scholar
  21. 21.
    Storb, R, Deeg, HJ, Whitehead, J,  et al. 1986Methotrexate and cyclosporine compared with cyclosporine alone for the prophylaxis of acute graft versus host disease after marrow transplantation for leukemiaN Engl J Med314729735PubMedGoogle Scholar
  22. 22.
    Neuner, P, Charvat, B, Knobler, R,  et al. 1994Cytokine release by peripheral blood mononuclear cells is affected by 8-methoxypsoralen plus UV-APhotobiol Photochem59182188Google Scholar
  23. 23.
    Bladon, J, Taylor, PC. 2002Extracorporeal photopheresis reduces the number of mononuclear cells that produce pro-inflammatory cytokines, when tested ex-vivoJ Clin Apheresis17177182CrossRefPubMedGoogle Scholar
  24. 24.
    Bladon, J, Taylor, PC. 2003Early reduction in number of T cells producing proinflammatory cytokines, observed after extracorporeal photopheresis, is not linked to apoptosis inductionTransplant Proc3513281332CrossRefPubMedGoogle Scholar
  25. 25.
    Klosner, G, Trautinger, F, Knobler, R,  et al. 2001Treatment of peripheral blood mononuclear cells with 8-methoxypsoralen plus ultraviolet A radiation induces a shift in cytokine expression from a Th1 to a Th2 responseJ Invest Dermatol116459462CrossRefPubMedGoogle Scholar
  26. 26.
    Lim, CP, Cao, X. 1999Serine phosphorylation and negative regulation of Stat3 by JNKJ Biol Chem2743105531061CrossRefPubMedGoogle Scholar
  27. 27.
    Liu, KD, Gaffen, SL, Goldsmith, MA. 1998JAK/STAT signalling by cytokine receptorsCurr Opin Immunol10271278CrossRefPubMedGoogle Scholar
  28. 28.
    Mudter, J, Neurath, MF. 2003The role of signal transducers and activators of transcription in T inflammatory bowel diseasesInflam Bowel Dis9332337CrossRefGoogle Scholar
  29. 29.
    Battle, TE, Frank, DA. 2002The role of STATs in apoptosisCurr Mol Med2381392PubMedGoogle Scholar
  30. 30.
    Germain, RN, Margulies, DH. 1993The biochemistry and cellular biology of antigen processing and presentationAnnu Rev Immunol11403450CrossRefPubMedGoogle Scholar
  31. 31.
    Muhlethaler–Mottet, A, Often, LA, Steimle, V,  et al. 1997Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITAEMBO J1628512860CrossRefPubMedGoogle Scholar
  32. 32.
    Muhlethaler–Mottet, A, Di Berardino, W, Often, LA,  et al. 1998Activation of the MHC class II transactivator CIITA by interferon-β requires cooperative interaction between Stat1 and USF-1Immunity8157166CrossRefPubMedGoogle Scholar
  33. 33.
    Moriggl, R, Topham, DJ, Teglund, S,  et al. 1999Stat5 is required for IL-2-induced cell cycle progression of peripheral T cellsImmunity10249259CrossRefPubMedGoogle Scholar
  34. 34.
    Kulms, D, Schwarz, T. 2001Ultraviolet radiation inhibits interleukin-2-induced tyrosine phosphorylation and the activation of STAT5 in T lymphocytesJ Biol Chem2761284912855CrossRefPubMedGoogle Scholar
  35. 35.
    Pericle, F, Kirken, RA, Bronte, V,  et al. 1997Immunocompromised tumor-bearing mice show a selective loss of STAT5a/b expression in T and B lymphocytesJ Immunol15925802585PubMedGoogle Scholar
  36. 36.
    Aragane, Y, Kulms, D, Luger, TA,  et al. 1997Down-regulation of interferon β-activated STAT1 by UV lightProc Natl Acad Sci USA941149011495CrossRefPubMedGoogle Scholar
  37. 37.
    Steimle, V, Siegrist, CA, Mottet, A,  et al. 1994Regulation of MHC class II expression by interferon-β mediated by the transactivator gene CIITAScience265106109PubMedGoogle Scholar
  38. 38.
    Barbaro, A L, Tosi, G, Frumento, G,  et al. 2002Block of Stat-1 activation in macrophages phagocytosing bacteria causes reduced transcription of CIITA and consequent impaired antigen presentationEur J Immunol3213091318CrossRefPubMedGoogle Scholar
  39. 39.
    Wolfe, JT, Lessin, SR, Singh, AH,  et al. 1994Review of immunomodulation by photopheresis: Treatment of cutaneous T cell lymphoma, autoimmune disease and allograft rejectionArtif Organs18888897PubMedGoogle Scholar
  40. 40.
    Ito, S, Ansari, P, Sakatsume, M,  et al. 1999Interleukin-10 inhibits expression of both interferon α- and interferon β-induced genes by suppressing tyrosine phosphorylation of STAT1Blood9314561463PubMedGoogle Scholar
  41. 41.
    Marodi, L, Goda, K, Palicz, A,  et al. 2001Cytokine receptor signalling in neonatal macrophages: defective STAT-1 phosphorylation in response to stimulation with IFN-βClin Exp Immunol126456460CrossRefPubMedGoogle Scholar
  42. 42.
    Fujihara, M, Takahashi, TA, Azuma, M,  et al. 1996Decreased inducible expression of CD80 and CD86 in human monocytes after ultraviolet-B irradiation: Its involvement in inactivation of allogenecityBlood8723862393PubMedGoogle Scholar
  43. 43.
    Rattis, FM, Concha, M, Dalbiez–Gauthier, C,  et al. 1998Effects of ultraviolet B radiation on human Langerhans cells: functional alterations of CD86 upregulation and induction of apoptotic cell deathJ Invest Dermatol111373379CrossRefPubMedGoogle Scholar
  44. 44.
    Tambur, AR, Ortegel, JW, Morales, A,  et al. 2000Extracorporeal photopheresis induces lymphocyte but not monocyte apoptosisTransplant Proc32747748CrossRefPubMedGoogle Scholar
  45. 45.
    Bladon, J, Taylor, PC. 2003Treatment of cutaneous T cell lymphoma with extracorporeal photopheresis induces Fas-ligand expression on treated T cells, but does not suppress the expression of co-stimulatory molecules on monocytesJ Photochem Photobiol B69129138CrossRefPubMedGoogle Scholar
  46. 46.
    Maziere, C, Dantin, F, Dubois, F,  et al. 2000Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human kerantinocytesFree Radic Biol Med2814301437CrossRefPubMedGoogle Scholar
  47. 47.
    French, LE, Alcindor, T, Shapiro, M. 2002Identification of amplified clonal T cell populations in the blood of patients with chronic graft-versus-host disease: positive correlation with response to photopheresisBone Marrow Transplant30509515CrossRefPubMedGoogle Scholar
  48. 48.
    Nakajima, H, Liu, XW, Wynshaw–Boris, A,  et al. 1997An indirect effect of Stat5a in IL-2-induced proliferation: a crucial role of Stat5a in IL-2-mediated IL-2 receptor alpha chain inductionImmunity7691701CrossRefPubMedGoogle Scholar
  49. 49.
    Bianchi, M, Meng, C, Ivashikiv, LB,  et al. 2000Inhibition of IL-2 induced Jak/STAT signalling by glucocortoidsProc Natl Acad Sci USA9795739578CrossRefPubMedGoogle Scholar
  50. 50.
    Owen, CM, Harrison, PV. 2000Successful treatment of severe psoriasis with basiliximab, an interleukin 2 receptor monoclonal antibodyClin Exp Dermatol25195197CrossRefPubMedGoogle Scholar
  51. 51.
    Mrowietz, U, Zhu, K, Christophers, E. 2000Treatment of severe psoriasis with anti-CD25 monoclonal antibodiesArch Dermatol136675676CrossRefPubMedGoogle Scholar
  52. 52.
    Takemoto, S, Mulloy, JC, Cereseto, A,  et al. 1997Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteinsProc Natl Acad Sci USA941389713902CrossRefPubMedGoogle Scholar
  53. 53.
    Franchini, G. 1995Molecular mechanisms of human T-cell leukemia/lymphotrppic virus type I infectionBlood8636193639PubMedGoogle Scholar
  54. 54.
    Nicot, C, Mulloy, JC, Ferrari, MG,  et al. 2001HTLV-1 p12Iproteins enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cellsBlood98823829CrossRefPubMedGoogle Scholar
  55. 55.
    Zamorano, J, Wang, HY, Wang, R,  et al. 1998Regulation of cell growth by IL2: Role of STAT5 in protection from apoptosis but not in cell cycle progressionJ Immunol16035023512PubMedGoogle Scholar
  56. 56.
    Erickson, S, Matikainen, S, Thyrell, L,  et al. 2002Interferon-alpha inhibits Stat5 DNA-binding in IL-2 stimulated primary T-lymphocytesEur J Biochem2692937CrossRefPubMedGoogle Scholar
  57. 57.
    Bernengo, MG, Fierro, MT, Novelli, M,  et al. 1993Soluble interleukin-2 receptor in Sezary syndrome: its origin and clinical applicationBr J Dermatol128124129PubMedGoogle Scholar
  58. 58.
    Fimiani, M, Rubegni, P, Pimpinelli, N,  et al. 1997Extracorporeal photochemotherapy induces a significant increase in CD36+ circulating monocytes in patients with mycosis fungoidesDermatology194107110PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of HaematologyRotherham General HospitalSouth YorkshireUnited Kingdom

Personalised recommendations