Skip to main content
Log in

Various ways to determine rational number size: an exploration across primary and secondary education

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

Understanding rational numbers is a complex task for primary and secondary school students. Previous research has shown that a possible reason is students’ tendency to apply the properties of natural numbers (inappropriately) when they are working with rational numbers (a phenomenon called natural number bias). Focusing on rational number comparison tasks, recent research has shown that other incorrect strategies such as gap thinking or reverse bias can also explain these difficulties. The present study aims to investigate students’ different ways of thinking when working on fraction and decimal comparison tasks. The participants were 1,262 primary and secondary school students. A TwoStep Cluster Analysis revealed six different student profiles according to their way of thinking. Results showed that while students’ reasoning based on the properties of natural numbers decreased along primary and secondary school, almost disappearing at the end of secondary school, students’ reasoning based on gap thinking increased along these grades. This result seems to indicate that when students overcome their reliance on natural numbers, they enter a stage of qualitatively different errors before finally reaching the stage of correct understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alibali, M. W., & Sidney, P. G. (2015). Variability in the natural number bias: who, when, how, and why. Learning and Instruction, 37, 56–61. https://doi.org/10.1016/j.learninstruc.2015.01.003.

    Article  Google Scholar 

  • Barraza, P., Avaria, R., & Leiva, I. (2017). The role of attentional networks in the access to the numerical magnitude of fractions in adults/El rol de las redes atencionales en el acceso a la magnitud numérica de fracciones en adultos. Estudios de Psicología, 38(2), 495–522. https://doi.org/10.1080/02109395.2017.1295575.

    Article  Google Scholar 

  • Behr, M. J., Lesh, R., Post, T., & Silver, E. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91–125). New York: Academic Press.

    Google Scholar 

  • Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence: a clinical teaching experiment. Journal of Research in Mathematics Education, 15(5), 323–341.

    Article  Google Scholar 

  • Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A robust and scalable clustering algorithm for mixed type attributes in large database environment. In Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 263-268). ACM. https://doi.org/10.1145/502512.502549

  • Clarke, D. M., & Roche, A. (2009). Students’ fraction comparison strategies as a window into robust understanding and possible pointers for instruction. Educational Studies in Mathematics, 72(1), 127–138. https://doi.org/10.1007/s10649-009-9198-9.

    Article  Google Scholar 

  • Depaepe, F., Van Roy, P., Torbeyns, J., Kleickmann, T., Van Dooren, W., & Verschaffel, L. (2018). Stimulating pre-service teachers’ content and pedagogical content knowledge on rational numbers. Educational Studies in Mathematics, 99(2), 197–216. https://doi.org/10.1007/s10649-018-9822-7.

    Article  Google Scholar 

  • DeWolf, M., & Vosniadou, S. (2011). The whole number bias in fraction magnitude comparisons with adults. In L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Proceedings of the 33rd annual conference of the cognitive science society (pp. 1751–1756). Austin: Cognitive Science Society.

    Google Scholar 

  • DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39–49. https://doi.org/10.1016/j.learninstruc.2014.07.002.

    Article  Google Scholar 

  • Durkin, K., & Rittle-Johnson, B. (2015). Diagnosing misconceptions: revealing changing decimal fraction knowledge. Learning and Instruction, 37, 21–29. https://doi.org/10.1016/j.learninstruc.2014.08.003.

    Article  Google Scholar 

  • Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(1), 1–16. https://doi.org/10.1037/xlm0000153.

    Article  Google Scholar 

  • Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3–17. https://doi.org/10.2307/748969.

    Article  Google Scholar 

  • Gelman, R., Cohen, M., & Hartnett, P. (1989). To know mathematics is to go beyond thinking that “fractions aren’t numbers”. In C. Maher, G. Goldin, & R. Davis (Eds.), Proceedings of the eleventh annual meeting of North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 29–67). New Brunswick: Center for Mathematics, Science, and Computer Education at Rutgers–The State University of New Jersey.

    Google Scholar 

  • Gómez, D., & Dartnell, P. (2018). Middle schoolers’ biases and strategies in a fraction comparison task. International Journal of Science and Mathematics Education, 17(6), 1233–1250. https://doi.org/10.1007/s10763-018-9913-z.

    Article  Google Scholar 

  • Gómez, D., Jiménez, A., Bobadilla, R., Reyes, C., & Dartnell, P. (2015). The effect of inhibitory control on general mathematics achievement and fraction comparison in middle school children. ZDM, 47(5), 801–811. https://doi.org/10.1007/s11858-015-0685-4.

    Article  Google Scholar 

  • Gómez, D., Silva, E., & Dartnell, P. (2017). Mind the gap: congruency and gap effects in engineering students’ fraction comparison. In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 353–360). Singapore: PME.

    Google Scholar 

  • González-Forte, J. M., Fernández, C., & Van Dooren, W. (2018). Gap and congruency effect in fraction comparison. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 459–466). Umeå: PME.

    Google Scholar 

  • Hiebert, J., & Wearne, D. (1985). A model of students’ decimal computation procedures. Cognition and Instruction, 2(3-4), 175–205. https://doi.org/10.1080/07370008.1985.9648916.

    Article  Google Scholar 

  • Kieren, T. E. (1992). Rational and fractional numbers as mathematical and personal knowledge: implications for curriculum and instruction. In G. Leinhardt, R. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 323–372). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26, 422–441. https://doi.org/10.2307/749431.

    Article  Google Scholar 

  • McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept (s). Learning and Instruction, 37, 14–20. https://doi.org/10.1016/j.learninstruc.2013.12.004.

    Article  Google Scholar 

  • Meert, G., Grégoire, J., & Noël, M. P. (2010). Comparing the magnitude of two fractions with common components: which representations are used by 10-and 12-year-olds? Journal of Experimental Child Psychology, 107(3), 244–259. https://doi.org/10.1016/j.jecp.2010.04.008.

    Article  Google Scholar 

  • Merenluoto, K., & Lehtinen, E. (2004). Number concept and conceptual change: towards a systemic model of the processes of change. Learning and Instruction, 14(5), 519–534. https://doi.org/10.1016/j.learninstruc.2004.06.016.

    Article  Google Scholar 

  • Moss, J. (2005). Pipes, tubs, and beakers: new approaches to teaching the rational-number system. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: History, math, and science in the classroom (pp. 309–349). Washington DC: National Academies Press.

    Google Scholar 

  • Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: a new model and an experimental curriculum. Journal for Research in Mathematics Education, 30, 122–147. https://doi.org/10.2307/749607.

    Article  Google Scholar 

  • Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52. https://doi.org/10.1207/s15326985ep4001_3.

    Article  Google Scholar 

  • Nunes, T., & Bryant, P. (2008). Rational numbers and intensive quantities: challenges and insights to pupils’ implicit knowledge. Anales de Psicología/Annals of Psychology, 24(2), 262–270.

    Google Scholar 

  • Obersteiner, A., & Alibali, M. W. (2018). Are adults biased in complex fraction comparison, and can benchmarks help? In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 427–434). Umeå: PME.

    Google Scholar 

  • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72. https://doi.org/10.1016/j.learninstruc.2013.05.003.

    Article  Google Scholar 

  • Obersteiner, A., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2016). Who can escape the natural number bias in rational number tasks? A study involving students and experts. British Journal of Psychology, 107, 537–555. https://doi.org/10.1111/bjop.12161.

    Article  Google Scholar 

  • Pearn, C., & Stephens, M. (2004). Why you have to probe to discover what year 8 students really think about fractions. In I. Putt, R. Faragher, & M. McLean (Eds.), Mathematics education for the third millenium: Towards 2010 (Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 430–437). Sydney: MERGA.

  • Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: the case of decimal fractions. Journal for Research in Mathematics Education, 20, 8–27. https://doi.org/10.2307/749095.

    Article  Google Scholar 

  • Rinne, L. F., Ye, A., & Jordan, N. C. (2017). Development of fraction comparison strategies: a latent transition analysis. Developmental Psychology, 53(4), 713–730. https://doi.org/10.1037/dev0000275.

    Article  Google Scholar 

  • Sarstedt, M., & Mooi, E. (2014). A concise guide to market research. The process, data, and methods using IBM SPSS Statistics. Berlin: Springer.

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Smith, C. L., Solomon, G. E., & Carey, S. (2005). Never getting to zero: elementary school students’ understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51(2), 101–140. https://doi.org/10.1016/j.cogpsych.2005.03.001.

    Article  Google Scholar 

  • Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and Instruction, 14(5), 503–518. https://doi.org/10.1016/j.learninstruc.2004.06.015.

    Article  Google Scholar 

  • Streefland, L. (1991). Fractions in realistic mathematics education: a paradigm of developmental research. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5–13. https://doi.org/10.1016/j.learninstruc.2014.03.002.

    Article  Google Scholar 

  • Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: a conceptual change approach. Learning and Instruction, 14(5), 453–467. https://doi.org/10.1016/j.learninstruc.2004.06.013.

    Article  Google Scholar 

  • Vamvakoussi, X., & Vosniadou, S. (2007). How many numbers are there in a rational numbers interval? Constraints, synthetic models and the effect of the number line. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the Conceptual Change Approach in Learning and Instruction (pp. 265–282). Amsterdam: Elsevier.

    Google Scholar 

  • Vamvakoussi, X., Christou, K. P., Mertens, L., & Van Dooren, W. (2011). What fills the gap between discrete and dense? Greek and Flemish students’ understanding of density. Learning and Instruction, 21(5), 676–685. https://doi.org/10.1016/j.learninstruc.2011.03.005.

    Article  Google Scholar 

  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344–355. https://doi.org/10.1016/j.jmathb.2012.02.001.

    Article  Google Scholar 

  • Vamvakoussi, X., Christou, K. P., & Vosniadou, S. (2018). Bridging psychological and educational research on rational number knowledge. Journal of Numerical Cognition, 4(1), 84–106. https://doi.org/10.5964/jnc.v4i1.82.

    Article  Google Scholar 

  • Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 1–4. https://doi.org/10.1016/j.learninstruc.2015.01.001.

    Article  Google Scholar 

  • Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 12(2), 154–164. https://doi.org/10.1080/14794802.2013.797747.

    Article  Google Scholar 

  • Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2015a). In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations. Learning and Instruction, 37, 30–38. https://doi.org/10.1016/j.learninstruc.2014.03.004.

    Article  Google Scholar 

  • Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2015b). Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1), 39–56. https://doi.org/10.1007/s10649-015-9613-3.

    Article  Google Scholar 

  • Van Hoof, J., Degrande, T., Ceulemans, E., Verschaffel, L., & Van Dooren, W. (2018). Towards a mathematically more correct understanding of rational numbers: a longitudinal study with upper elementary school learners. Learning and Individual Differences, 61, 99–108. https://doi.org/10.1016/j.lindif.2017.11.010.

    Article  Google Scholar 

  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, X. (2008). The framework approach to the problem of conceptual change. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 3–34). Mahwah: Lawrence Erlbaum.

    Google Scholar 

Download references

Acknowledgments

This research was carried out with the support of Conselleria d’Educació, Investigació, Cultura i Esport (Generalitat Valenciana, Spain) (PROMETEO/2017/135) and with the support of the University of Alicante (UAFPU2018-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel González-Forte.

Additional information

Juan Manuel González-Forte. Departamento de Innovación y Formación Didáctica, Facultad de Educación, Universidad de Alicante, Calle Aeroplano, s/n. 03690 San Vicente del Raspeig, Spain. E-mail: juanma.gonzalez@ua.es

Current themes of research:

Mathematical thinking, teaching, and learning.

Most relevant publications in the field of Psychology of Education:

No previous publications

Ceneida Fernández. Departamento de Innovación y Formación Didáctica, Facultad de Educación, Universidad de Alicante, Calle Aeroplano, s/n. 03690, San Vicente del Raspeig, Spain. E-mail: ceneida.fernandez@ua.es

Current themes of research:

Mathematical thinking, teaching and learning, teacher training.

Most relevant publications in the field of Psychology of Education:

- Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2018). Relationships among prospective secondary mathematics teachers’ skills of attending, interpreting and responding to students’ understanding. Educational Studies in Mathematics, DOI: 10.1007/s10649-018-9855-y.

- Ivars, P., Fernández, C., Llinares, S., & Choy, B.H. (2018). Enhancing noticing: Using a hypothetical learning trajectory to improve pre-service primary teachers’ professional discourse. Eurasia. Journal of Mathematics, Science and Technology Education, 14(11), em1599.

- Jiang, R., Li, X., Fernández, C. & Fu, X. (2016). Students’ performance on missing-value word problems: a cross-national developmental study. European Journal of Psychology of Education, 32(4), 551-570.

- Fernández, C., De Bock, D., Verschaffel, L. & Van dooren, W. (2014). Do students confuse dimensionality and “directionality”? Journal of Mathematical Behavior, 36, 166-176.

Jo Van Hoof. Centre for Instructional Psychology and Technology, University of Leuven, Dekenstraat, 2, 3000, Leuven, Belgium. E-mail address: jo.vanhoof@kuleuven.be

Current themes of research:

Conceptual change approach to mathematics learning. Higher order number sense. The role of inhibition in mathematics reasoning. Learners’ rational number understanding. Intuitions, heuristics, and biases in human reasoning.

Most relevant publications in the field of Psychology of Education:

- Van Hoof, J., Degrande, T., Ceulemans, E., Verschaffel, L., & Van Dooren, W. (2018). Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 61, 99-108.

- McMullen, J., Van Hoof, J., Degrande, T., Verschaffel, L., & Van Dooren, W. (2018). Profiles of rational number knowledge in Finnish and Flemish students–A multigroup latent class analysis. Learning and Individual Differences, 66, 70-77.

- Bojorque, G., Torbeyns, J., Van Hoof, J., Van Nijlen, D., & Verschaffel, L. (2018). Effectiveness of the Building Blocks program for enhancing Ecuadorian kindergartners’ numerical competencies. Early Childhood Research Quarterly, 44, 231-241.

- Degrande, T., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2018). Open word problems: taking the additive or the multiplicative road?. ZDM, 50, 1-12.

- Van Hoof, J., Verschaffel, L., Ghesquière, P., & Van Dooren, W. (2017). The natural number bias and its role in rational number understanding in children with dyscalculia. Delay or deficit? Research in Developmental Disabilities, 71, 181-190.

Wim Van Dooren. Centre for Instructional Psychology and Technology, University of Leuven, Dekenstraat, 2, 3000, Leuven, Belgium. E-mail: wim.vandooren@kuleuven.be

Current themes of research:

Mathematical thinking and problem solving. The role of intuitions and heuristics in mathematics. Conceptual change. The use of multiple representations in teaching and learning.

Most relevant publications in the field of Psychology of Education:

- Van Dooren, W., Lem, S,, De Wortelaer, H., & Verschaffel, L. (2018). Improving realistic word problem solving by using humor. Journal of Mathematical Behavior, 53, 96-104

- Van Hoof, J., Degrande, T., Ceulemans, E., Verschaffel, L., & Van Dooren, W. (2018). Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 61, 99-108.

- Lem, S., Onghena, P., Verschaffel, L., & Van Dooren, W. (2017). The power of refutational text: Changing intuitions about the interpretation of box plots. European Journal of Psychology of Education, 32(4), 537-550.

- Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2017). Number sense in the transition from natural to rational numbers. British Journal of Educational Psychology, 87(1), 43-56.

- Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 1-4.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Forte, J.M., Fernández, C., Van Hoof, J. et al. Various ways to determine rational number size: an exploration across primary and secondary education. Eur J Psychol Educ 35, 549–565 (2020). https://doi.org/10.1007/s10212-019-00440-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10212-019-00440-w

Keywords

Navigation