Skip to main content
Log in

Training peer-feedback skills on geometric construction tasks: role of domain knowledge and peer-feedback levels

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

Peer feedback is widely used to train assessment skills and to support collaborative learning of various learning tasks, but research on peer feedback in the domain of mathematics is limited. Although domain knowledge seems to be a prerequisite for peer-feedback provision, it only recently received attention in the peer-feedback literature. In this study, preservice mathematics teachers (N = 43) were involved in a peer-feedback training in which they evaluated geometric construction tasks and were (a) trained to provide peer feedback on different levels (i.e. task, process and self-regulation) and (b) scaffolded with worked examples, feedback provision prompts and evaluation rubrics during the training. A quasi-experimental mixed design was implemented with domain knowledge as the between-subject factor and measurement occasion as the within-subject factor. Students’ peer-feedback provision skills and their beliefs about peer-feedback provision were measured before and after the training. Students with high and medium domain knowledge provided more peer feedback at the self-regulation level, whereas those low in domain knowledge provided more peer feedback at the task-level after the training. Students’ beliefs about peer-feedback provision became less positive after the training, regardless of the level of their domain knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bathke, A. C., Schabenberger, O., Tobias, R. D., & Madden, L. V. (2009). Greenhouse-Geisser adjustment and the ANOVA-type statistic: cousins or twins? The American Statistician, 63(3), 239–246.

    Article  Google Scholar 

  • Brown, G. T. L., Peterson, E. R., & Yao, E. S. (2016). Student conceptions of feedback: impact on self-regulation, self-efficacy, and academic achievement. British Journal of Educational Psychology. doi:10.1111/bjep.12126.

  • Brunner, E., Munzel, U., & Puri, M. L. (1999). Rank score tests in factorial designs with repeated measures. Journal of Multivariate Analysis, 70(2), 286–317. doi:10.1006/jmva.1999.1821.

    Article  Google Scholar 

  • Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: a theoretical synthesis. Review of Educational Research, 65(3), 245–281.

    Article  Google Scholar 

  • Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Psychology, 86(3), 360–367.

    Article  Google Scholar 

  • Chen, N., Wei, C., Wua, K., & Uden, L. (2009). Effects of high level prompts and peer assessment on online learners’ reflection levels. Computers & Education, 52(2), 283–291. doi:10.1016/j.compedu.2008.08.007.

    Article  Google Scholar 

  • Cheng, W., & Warren, M. (1997). Having second thoughts: student perceptions before and after a peer assessment exercise. Studies in Higher Education, 22(2), 233–239.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Ericsson, K. A., & Charness, N. (1994). Expert performance: its structure and acquisition. American Psychologist, 49(8), 725–747. doi:10.1037/0003-066X.49.8.725.

    Article  Google Scholar 

  • Ericsson, K. A., & Crutcher, R. J. (1991). Introspection and verbal reports on cognitive processes—two approaches to the study of thinking: a response to Howe*. New Ideas in Psychology, 9(1), 57–91. doi:10.1016/0732-118X(91)90041-J.

    Article  Google Scholar 

  • Field, A. P. (2009). Discovering statistics using SPSS (3rd ed). Los Angeles: SAGE.

  • Friedrich, S., Konietschke, F., & Pauly, M. (2017). GFD: an R-package for the analysis of general factorial designs. Journal of Statistical Software, 79(1), 1–18. doi:10.18637/jss.v079.c01.

  • Gan, M. (2011). The effects of prompts and explicit coaching on peer feedback quality (Unpublished doctoral dissertation). The University of Auckland, New Zealand.

  • Gan, M. J. S., & Hattie, J. (2014). Prompting secondary students’ use of criteria, feedback specificity and feedback levels during an investigative task. Instructional Science, 42(6), 861–878. doi:10.1007/s11251-014-9319-4.

    Article  Google Scholar 

  • Gielen, S., Peeters, E., Dochy, F., Onghena, P., & Struyven, K. (2010). Improving the effectiveness of peer feedback for learning. Learning and Instruction, 20(4), 304–315.

    Article  Google Scholar 

  • Harris, L. R., Brown, G. T. L., & Harnett, J. (2015). Analysis of New Zealand primary and secondary student peer- and self-assessment comments: applying Hattie & Timperley’s feedback model. Assessment in Education: Principles, Policy and Practice, 22(2), 265–281. doi:10.1080/0969594X.2014.976541.

    Article  Google Scholar 

  • Hattie, J. A., & Gan, M. (2011). Instruction based on feedback. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 249–271). New York: Routledge.

    Google Scholar 

  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. doi:10.3102/003465430298487.

    Article  Google Scholar 

  • Hinkin, T. R. (1998). A brief tutorial on the development of measures for use in survey questionnaires. Organizational Research Methods, 1(1), 104–121. doi:10.1177/109442819800100106.

    Article  Google Scholar 

  • King, A. (2002). Structuring peer interaction to promote high-level cognitive processing. Theory Into Practice, 41(1), 33–39. doi:10.1207/s15430421tip4101_6.

    Article  Google Scholar 

  • Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: a historical review, a meta-analysis and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254–284.

    Article  Google Scholar 

  • Kuhn, D. (2015). Thinking together and alone. Educational Researcher, 44(1), 46–53. doi:10.3102/0013189X15569530.

    Article  Google Scholar 

  • Kuzniak, A., & Houdement, C. (2001). Pretty (good) didactical provocation as a tool for teacher’s training in geometry. In J. Novotná (Ed.), Proceedings of European research in mathematics education II (pp. 292–303). Mariánské Lázně Czech Republic: Charles University, Faculty of Education.

    Google Scholar 

  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1–10. doi:10.3389/fpsyg.2013.00863.

    Article  Google Scholar 

  • Lavy, I., & Shriki, A. (2014). Engaging prospective teachers in peer assessment as both assessors and assesses: the case of geometrical proofs. International Journal for Mathematics Teaching and Learning. Retrieved from http://www.cimt.plymouth.ac.uk/jour-nal/lavey2pdf.

  • Linderbaum, B. A., & Levy, P. E. (2010). The development and validation of the feedback orientation scale (FOS). Journal of Management, 36(6), 1372–1405. doi:10.1177/0149206310373145.

    Article  Google Scholar 

  • Miyakawa, T. (2004). Reflective symmetry in construction and proving. In M. J. Høines & A. B. Berit (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics education (pp. 337–344). Bergen: Bergen University College.

    Google Scholar 

  • Nathan, M. J., Koedinger, K. R., & Alibali, M. W. (2001). Expert blind spot: when content knowledge eclipses pedagogical content knowledge. In L. Chen (Ed.), Proceedings of the Third International Conference on Cognitive Science (pp. 644–648). Beijin: University of Science and Technology on China Press.

    Google Scholar 

  • Nicol, D., Thomson, A., & Breslin, C. (2014). Rethinking feedback practices in higher education: a peer review perspective. Assessment & Evaluation in Higher Education, 39(1), 102–122. doi:10.1080/02602938.2013.795518.

    Article  Google Scholar 

  • Noguchi, K., Gel, Y. R., Brunner, E., & Konietschke, F. (2012). nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, 50(12), 1–23.

    Article  Google Scholar 

  • Nückles, M., Hübner, S., & Renkl, A. (2009). Enhancing self-regulated learning by writing learning protocols. Learning and Instruction, 19(3), 259–271. doi:10.1016/j.learninstruc.2008.05.002.

    Article  Google Scholar 

  • O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, and Computers, 32(3), 396–402.

  • Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. Journal of Educational Psychology, 86(1), 122–133.

    Article  Google Scholar 

  • Panadero, E., Romero, M., & Strijbos, J. W. (2013). The impact of rubric and friendship on peer assessment: effects on construct validity, performance, and perceptions of fairness and comfort. Studies in Educational Evaluation, 39(4), 195–203. doi:10.1016/j.stueduc.2013.10.005.

    Article  Google Scholar 

  • Panadero, E., Brown, G. T. L., & Strijbos, J. W. (2016). The future of student self-assessment: a review of known unknown and potential directions. Educational Psychology Review, 28(4), 803–830. doi:10.1007/s10648-015-9350-2.

    Article  Google Scholar 

  • Patchan, M. M., & Schunn, C. D. (2015). Understanding the benefits of providing peer feedback: how students respond to peers’ texts of varying quality. Instructional Science, 43(5), 591–614. doi:10.1007/s11251-015-9353-x.

    Article  Google Scholar 

  • Phielix, C., Prins, F. J., & Krischner, P. A. (2010). Awareness of group performance in a CSCL-environment: effects of peer feedback and reflection. Computers in Human Behavior, 26, 151–161. doi:10.1016/j.chb.2009.10.011.

    Article  Google Scholar 

  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386. doi:10.1207/s15327809jls1303_4.

    Article  Google Scholar 

  • Reiss, K. M., Heinze, A., Renkl, A., & Groß, C. (2008). Reasoning and proof in geometry: effects of learning environment based on heuristic worked-out examples. ZDM Mathematics Education, 40(3), 455–467. doi:10.1007/s11858-008-0105-0.

    Article  Google Scholar 

  • Renkl, A. (2014). Towards an instructionally-oriented theory of example-based learning. Cognitive Science, 38, 1–37. doi:10.1111/cogs.12086.

    Article  Google Scholar 

  • Rotsaert, T., Panadero, E., Estrada, E., & Schellens, T. (2017). How do students perceive the educational value of peer assessment in relation to its social nature? A survey study in Flanders. Studies in Educational Evaluation, 53, 29–40. doi:10.1016/j.stueduc.2017.02.003.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1986). On having and using geometric knowledge. In J. Hiebert (Ed.), Conceptual and procedural knowledge: the case of mathematics (pp. 225–264). Hillsdale,NJ: Erlbaum.

    Google Scholar 

  • Schoenfeld, A. H. (1989). Explorations of students’ mathematical beliefs and behavior. Journal for Research in Mathematics Education, 20(4), 338–355. doi:10.2307/749440.

    Article  Google Scholar 

  • Sluijsmans, D. M. A., Brand-Gruwel, S., Van Merriënboer, J. J. G., & Martens, R. L. (2004). Training teachers in peer-assessment skills: effects on performance and perceptions. Innovations in Education and Teaching International, 41(1), 59–57. doi:10.1080/1470329032000172720.

    Article  Google Scholar 

  • Strijbos, J. W., & Müller, A. (2014). Personale faktoren im feedbackprozess. In H. Ditton & A. Müller (Eds.), Feedback und rückmeldungen: theoretische grundlagen, empirische befunde, praktische anwendungsfelder [Feedback and evaluation: theoretical foundations, empirical findings, practical implementation] (pp. 87–134). Münster: Waxmann.

    Google Scholar 

  • Strijbos, J. W., Martens, R. L., Prins, F. J., & Jochems, W. M. G. (2006). Content analysis: what are they talking about? Computers & Education, 46(1), 29–48. doi:10.1016/j.compedu.2005.04.002.

    Article  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Essex, England: Pearson.

    Google Scholar 

  • Tapan, M. S., & Arslan, C. (2009). Preservice teachers’ use of spatio-visual elements and their level of justification dealing with a geometrical construction problem. US-China Education Review, 6(3), 54–60.

    Google Scholar 

  • Ufer, S., Heinze, A., & Reiss, K. (2008). Individual predictors of geometrical proof competence. In Figueras, O., Cortina, J.L., Alatorre, S., Rojano, T., Sepulveda, A. (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX, Vol. 4 (pp. 361–368). Mexico: Cinvestav-UMSNH.

  • Ufer, S., Heinze, A., & Reiss, K. (2009). Mental models and the development of geometric proof competency. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, Vol. 5 (pp. 257–264). Thessaloniki: PME.

    Google Scholar 

  • Van Zundert, M. J., Könings, K. D., Sluijsmans, D. M. A., & Van Merriënboer, J. J. G. (2012a). Teaching domain-specific skills before peer assessment skills is superior to teaching them simultaneously. Educational Studies, 38(5), 541–557. doi:10.1080/03055698.2012.654920.

    Article  Google Scholar 

  • Van Zundert, M. J., Sluijsmans, D. M. A., Könings, K. D., & Van Merriënboer, J. J. G. (2012b). The differential effects of task complexity on domain-specific and peer assessment skills. Educational Psychology: An International Journal of Experimental Educational Psychology, 32(1), 127–145. doi:10.1080/01443410.2011.626122.

    Article  Google Scholar 

  • Wang, W. (2014). Students’ perceptions of rubric-referenced peer feedback on EFL writing: a longitudinal inquiry. Assessing Writing, 19, 80–96. doi:10.1016/j.asw.2013.11.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Alqassab.

Additional information

Maryam Alqassab. Department of Psychology, LMU Munich, Germany Leopoldstr. 44, 80802 Munich, Germany. E-mail:maryam.alqassab@psy.lmu.de, website: http://www.en.mcls.lmu.de/study_programs/reason/people/phdstudents/alquassab/index.html

Current Research themes:

Peer assessment and peer feedback (PF). Role of Individual factors in PF activities. Mathematical argumentation and proofs

Most relevant publications:

Alqassab, M., Strijbos, J., & Ufer, S. (2015, August). The impact of peer feedback on mathematical reasoning: role of domain-specific ability and emotions. Paper presented at the 16th Biennial EARLI Conference for Research on Learning and Instruction, Limassol, Cyprus.

Alqassab, M., & Strijbos, J. W. (2016, August). The diversity of peer assessment revisited. Poster presented at the 8th Biennial Conference of EARLI SIG 1: Assessment & Evaluation, Munich, Germany.

Alqassab, M., Strijbos, J. W., & Ufer, S. (2016). Exploring the composition process of peer feedback. In Looi, C. K., Polman, J. L., Cress, U., and Reimann, P.(Eds.), Transforming Learning, Empowering Learners: The International Conference of the Learning Sciences (ICLS), Volume 2 (pp.862-865). Singapore: International Society of the Learning Sciences.

Prof. Dr. Jan-Willem Strijbos. Faculty of Behavioural and Social Sciences, University of Groningen, Grote Rozenstraat 3, 9712 TG Groningen, The Netherlands. E-mail: j.w.strijbos@rug.nl, website: http://www.rug.nl/staff/j.w.strijbos/

Current Research themes:

Assessment and Feedback. Technology-Enhanced Learning (TEL). (Computer-Supported) Collaborative Learning (CS)CL. Peer assessment. Peer feedback. Feedback dialogues. Communities of learners/communities of practice. Instructional design. Analysis methods for (CS)CL. Content analysis of discourse

Most relevant publications:

Bolzer, M., Strijbos, J. W., & Fischer, F. (2015). Inferring mindful cognitive-processing of peer-feedback via eye-tracking: role of feedback-characteristics, fixation-durations and transitions. Journal of Computer Assisted Learning, 31(5), 422-434. doi: 10.1111/jcal.12091

Panadero, E., Romero, M., & Strijbos, J-W. (2013). The impact of a rubric and friendship on peer assessment: Effects on construct validity, performance, and perceptions of fairness and comfort. Studies in Educational Evaluation, 39(4), 195-203. doi: 10.1016/j.stueduc.2013.10.005

Strijbos, J-W., Narciss, S., & Duennebier, K. (2010). Peer feedback content and sender's competence level in academic writing revision tasks: Are they critical for feedback perceptions and efficiency? Learning and Instruction, 20(4), 291-303. doi: 10.1016/j.learninstruc.2009.08.008

Prof. Dr. Stefan Ufer Mathematics Institute, LMU Munich, Theresienstr. 39, 80333 Munich, Germany. E-mail: ufer@math.lmu.de, website: http://www.mathematik.unimuenchen.de/~didaktik/index.php?ordner=ufer&data=start

Current research themes:

Mathematics education. Mathematical argumentation and proofs. Secondary-tertiary transition

Most relevant publications:

Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., Fischer, M., Strijbos, J.-W., Heene, M., & Eberle, J. (2014). Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education. Frontline Learning Research 2 (2), 28-45.

Sommerhoff, D., Ufer, S., Kollar, I. (2016). Proof Validation Aspects and Cognitive Student Prerequisites in Undergraduate Mathematics. In Csikos, C., Rausch, A., & Szitanyi, J. (Eds.): Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 219-226. Szeged, Hungary: PME.

Vogel, F., Kollar, I., Ufer, S., Reichersdorfer, E., Reiss, K., Fischer, F. (2016). Developing argumentation skills in mathematics through computer-supported collaborative learning: the role of transactivity. Instructional Science 44(5), 477-500.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqassab, M., Strijbos, JW. & Ufer, S. Training peer-feedback skills on geometric construction tasks: role of domain knowledge and peer-feedback levels. Eur J Psychol Educ 33, 11–30 (2018). https://doi.org/10.1007/s10212-017-0342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10212-017-0342-0

Keywords

Navigation