European Journal of Psychology of Education

, Volume 32, Issue 2, pp 311–331 | Cite as

On-entry assessment of school competencies and academic achievement: a comparison between Slovenia and Germany

  • Maša Vidmar
  • Frank Niklas
  • Wolfgang Schneider
  • Marcus Hasselhorn
Article

Abstract

The foundation of school success is laid early in children’s lives. Consequently, assessments of academic precursors may help to identify children in need of additional support. Such early assessments could also be interesting from an international perspective when educational systems are compared. This analysis is used to inform on the comparability of Slovenian and German versions of the English on-school-entry assessment tool “Performance Indicators in Primary School” (PIPS; Tymms and Albone 2002). PIPS was also used to predict later academic achievement in the two national samples. The German sample consisted of 468 children with a mean age of about 6;6 years at school entry (48.7 % girls). In Slovenia, 328 children (49 % girls) were assessed (mean age of about 6;3 years at school entry). Multi-group confirmatory factor analyses for PIPS did not support weak measurement invariance. However, results indicated that the number of factors as well as the pattern of loadings seems to be comparable. Further research is needed to examine in which respects PIPS might work as a tool for international comparisons. Structural equation modelling indicated that PIPS can be used as a predictor of academic achievement and that overall academic achievement could be predicted best by early numeracy. PIPS measures of literacy and numeracy skills were specific and significant predictors of children’s later language and math achievement in grade 1.

Keywords

Performance indicators in primary school (PIPS) Academic achievement Primary school children Early numeracy Early literacy International comparison On-school-entry assessment 

References

  1. Aunio, P., & Niemivirta, M. (2010). Predicting children's mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20, 427–435.CrossRefGoogle Scholar
  2. Bäuerlein, K., Faust, G., Franz, U., Jost, M., & Schneider, W. (2010). Fähigkeitsindikatoren Primarschule (FIPS)—Erprobung und Weiterentwicklung einer internationalen computerbasierten Schulanfangsdiagnose [Performance Indicators for Primary Schools (PIPS)—testing and development of an international computerized test instrument for the beginning of school]. In M. Hasselhorn & W. Schneider (Eds.), Frühprognose schulischer Kompetenzen, Tests und Trends, N.F., Vol. 9 (pp. 85–108). Göttingen: Hogrefe.Google Scholar
  3. Bäuerlein, K., Niklas, F., & Schneider, W. (2014). Fähigkeitsindikatoren Primarschule (FIPS)—Überprüfung des Lernerfolgs in der ersten Klasse [Performance Indicators for Primary Schools (PIPS)—Evaluation of learning success in Grade 1]. In M. Hasselhorn, W. Schneider, & U. Trautwein (Eds.), Lernverlaufsdiagnostik, Tests und Trends, N.F., Vol. 12 (pp. 127–144). Göttingen: Hogrefe.Google Scholar
  4. Betts, J., Pickart, M., & Heistad, D. (2009). Construct and predictive validity evidence for curriculum-based measures of early literacy and numeracy skills in kindergarten. Journal of Psychoeducational Assessment, 27(2), 83–95.CrossRefGoogle Scholar
  5. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. Bollen & J. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.Google Scholar
  6. Burgemeister, B., Blum, L., & Lorge, J. (1972). Columbia mental maturity scale. New York: Harcourt Brace Jovanovich.Google Scholar
  7. Byrnes, J. P., & Wasik, B. A. (2009). Factors predictive of mathematics achievement in kindergarten, first and third Grades: An opportunity—propensity analysis. Contemporary Educational Psychology, 34, 167–183.CrossRefGoogle Scholar
  8. Centre, C. E. M. (2001). Performance indicators in primary schools (technical report 2001). Durham, UK: University of Durham.Google Scholar
  9. Centre, C. E. M. (2005a). Performance indicators in primary schools: On-entry baseline assessment [Booklet format]. Durham, UK: University of Durham.Google Scholar
  10. Centre, C. E. M. (2005b). Performance Indicators in Primary Schools: On-entry baseline assessment: Follow-up [Booklet format]. Durham, UK: University of Durham.Google Scholar
  11. Chen, F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling Multidisciplinary Journal, 14(3), 464–504.CrossRefGoogle Scholar
  12. Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cut-off points in RMSEA test statistic in structural equation models. Sociological Methods & Research, 36(4), 462–494.CrossRefGoogle Scholar
  13. Chittleborough, C. R., Mittinty, M. N., Lawlor, D. A., & Lynch, J. W. (2014). Effects of simulated interventions to improve school entry academic skills on socioeconomic inequalities in educational achievement. Child Development, 85(6), 2247–2262.Google Scholar
  14. Cuna, F., & Heckman, J. (2010). Investing in our young people. Cambridge, MA: National Bureau of Economic Research.CrossRefGoogle Scholar
  15. Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.CrossRefGoogle Scholar
  16. Dowker, A. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 324–332.CrossRefGoogle Scholar
  17. Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., et al. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446.CrossRefGoogle Scholar
  18. Ehm, J. H., & Hasselhorn, M. (2014). Prediction of spelling abilities in grade 4: Results from the German longitudinal study „Schulreifes Kind”. Presentation held at the Scottish Educational Research Association (SERA) Annual Conference 2014, Edinburgh, UK.Google Scholar
  19. Esser, G. (2002). BUEVA—Basisdiagnostik für umschriebene Entwicklungsstörungen im Vorschulalter [BUEVA—basis diagnostics for developmental disorders at pre-school age]. Göttingen: Beltz.Google Scholar
  20. Fan, X., & Sivo, S. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate Behavioral Research, 42(3), 509–529.CrossRefGoogle Scholar
  21. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552.CrossRefGoogle Scholar
  22. Hair, E., Halle, T., Terry-Humen, E., Lavelle, B., & Calkins, J. (2006). Children’s school readiness in the ECLS-K: predictions to academic, health, and social outcomes in first grade. Early Childhood Research Quarterly, 21, 431–454.CrossRefGoogle Scholar
  23. Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  24. Hasselhorn, M., Schöler, H., Schneider, W., Ehm, J.-H., Johnson, M., Keppler, I., Krebs, K., Niklas, F., Randhawa, E., Schmiedeler, S., Segerer, R., & Wagner, H. (2012). Gezielte Zusatzförderung im Modellprojekt “Schulreifes Kind”—Auswirkungen auf Schulbereitschaft und schulischen Lernerfolg [Focused additional support in the project “Schoolready child”—impact on school readiness and school success]. Frühe Bildung, 1(1), 3–10.CrossRefGoogle Scholar
  25. Hu, L., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRefGoogle Scholar
  26. Kenny, D. A. (2014). Measuring Model Fit. Retrieved February 3, 2016 from URL: http://davidakenny.net/cm/fit.htm
  27. Krajewski, K., Küspert, P., Schneider, W., & Visé, M. (2002). Deutscher Mathematiktest für erste Klassen (DEMAT 1+). [German mathematical test for Grade 1]. Göttingen: Hogrefe.Google Scholar
  28. Krajewski, K., Liehm, S., & Schneider, W. (2004). Deutscher Mathematiktest für zweite Klassen (DEMAT 2+). [German mathematical test for Grade 2]. Göttingen: Hogrefe.Google Scholar
  29. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 513–526.CrossRefGoogle Scholar
  30. Lenhard, W., & Schneider, W. (2006). Ein Leseverständnistest für Erst- bis Sechstklässler. [A reading comprehension test for Grade 1 to 6]. Göttingen: Hogrefe.Google Scholar
  31. MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107–120.CrossRefGoogle Scholar
  32. Marcoulides, G. A., & Hershberger, S. L. (1997). Multivariate statistical methods: A first course. Mahwah, NJ: Erlbaum.Google Scholar
  33. Masten, A. S., Coatsworth, J. D., Neemann, J., Gest, S. D., Tellegen, A., & Garmezy, N. (1995). The structure and coherence of competence from childhood through adolescence. Child Development, 66, 1635–1659.CrossRefGoogle Scholar
  34. McWayne, C. M., Fantuzzo, J. W., & McDermott, P. A. (2004). Competency in context: an investigation of the unique contribution of child competencies to early academic success. Developmental Psychology, 40(4), 633–645.CrossRefGoogle Scholar
  35. Muthén, L. K. (1999). Multilevel data/complex sample: Intraclass correlations [4th post]. Retrieved February 3, 2016 from URL: http://www.statmodel.com/discussion/messages/12/18.html?1238555255
  36. Näslund, J. C., & Schneider, W. (1996). Kindergarten letter knowledge, phonological skills, and memory processes: relative effects on early literacy. Journal of Experimental Child Psychology, 62, 30–59.CrossRefGoogle Scholar
  37. Niklas, F. (2011). Vorläuferfertigkeiten im Vorschulalter zur Vorhersage der Schulfähigkeit, späterer Rechenschwäche und Lese- und Rechtschreibschwäche. Diagnostik, Zusammenhänge und Entwicklung in Anbetracht der bevorstehenden Einschulung [Precursors of school readiness and for the prediction of later dyscalculia and dyslexia. Diagnosis, interrelations and development considering imminent school enrolment]. Hamburg: Dr. Kovač.Google Scholar
  38. Niklas, F., Cohrssen, C., & Tayler, C. (in press). Improving preschoolers’ numerical abilities by enhancing the home numeracy environment. Early Education and Development. doi: http://dx.doi.org/10.1080/10409289.2015.1076676
  39. Niklas, F., & Schneider, W. (2015). With a little help: improving kindergarten children’s vocabulary by enhancing the home literacy environment. Reading and Writing: An Interdisciplinary Journal, 28(4), 491–508.CrossRefGoogle Scholar
  40. OECD (2014). Education at a glance 2014: OECD Indicators. OECD Publishing. doi: http://dx.doi.org/10.1787/eag-2014-en
  41. Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525–556.CrossRefGoogle Scholar
  42. Preßler, A.-L., Könen, T., Hasselhorn, M., & Krajewski, K. (2014). Cognitive preconditions of early reading and spelling: a latent-variable approach with longitudinal data. Reading and Writing, 27, 383–406.CrossRefGoogle Scholar
  43. Raven, J., Raven, J. C., & Court, J. H. (1999). Priročnik za Ravenove progresivne matrice in besedne lestvice. 2. zvezek. Barvne progresivne matrice. [Manual for Raven's progressive matrices and vocabulary scales. Section 2. Colored progressive matrices] Ljubljana: Center za psihodiagnostična sredstva.Google Scholar
  44. Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7(2), 147–177.CrossRefGoogle Scholar
  45. Schleicher, A. (2013). Beyond PISA 2015: A longer-term strategy of PISA. 36th meeting of the PISA Governing Board. EDU/PISA/GB(2013)14. Retrieved October 3, 2015 from http://www.oecd.org/callsfortenders/ANNEX%20A.pdf
  46. Schneider, W. (2009). The development of reading and spelling: Relevant precursors, developmental changes, and individual differences. In W. Schneider & M. Bullock (Eds.), Human development from early childhood to early adulthood: findings from a 20 year longitudinal study (pp. 199–220). New York: Psychology Press.Google Scholar
  47. Schneider, W., Blanke, I., Faust, V., & Küspert, P. (2011). Würzburger Leise Leseprobe-Revision (WLLP-R). Ein Gruppentest für die Grundschule [Würzburger silent reading test—revision (WLLP-R). A group test for primary school]. Göttingen: Hogrefe.Google Scholar
  48. Schneider, W., & Näslund, J. C. (1999). The impact of early phonological processing skills on reading and spelling in school: Evidence from the Munich Longitudinal Study. In F. E. Weinert & W. Schneider (Eds.), Individual development from 3 to 12: Findings from the Munich Longitudinal Study (pp. 126–147). Cambridge, UK: Cambridge University Press.Google Scholar
  49. Schneider, W., Niklas, F., & Schmiedeler, S. (2014). Intellectual development from early childhood to early adulthood: the impact of early IQ differences on stability and change over time. Learning and Individual Differences, 32, 156–162.CrossRefGoogle Scholar
  50. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis. An introduction to basic and advanced multilevel modeling. London: Sage.Google Scholar
  51. Stern, E. (2009). The development of mathematical competencies. Sources of individual differences and their developmental trajectories. In W. Schneider & M. Bullock (Eds.), Human development from early childhood to early adulthood: Findings from a 20 year longitudinal study (pp. 221–237). New York: Psychology Press.Google Scholar
  52. Stock, C., & Schneider, W. (2008). Deutscher Rechtschreibtest für das erste und zweite Schuljahr (DERET 1-2+) [German Spelling Test for Grade 1 and 2]. Göttingen: Hogrefe.Google Scholar
  53. Torppa, M., Poikkeus, A.-M., Laakso, M.-L., Eklund, K., & Lyytinen, H. (2006). Predicting delayed letter knowledge development and its relation to grade 1 reading achievement among children with and without familial risk for dyslexia. Developmental Psychology, 42(6), 1128–1142.CrossRefGoogle Scholar
  54. Tymms, P. (1999). Baseline assessment, value-added and the prediction of reading. Journal of Research in Reading, 22(1), 27–36.CrossRefGoogle Scholar
  55. Tymms, P. (2001). The development of a computer-adaptive assessment in the early years. Educational and Child Psychology, 18(3), 20–30.Google Scholar
  56. Tymms, P., & Albone, S. (2002). Performance indicators in primary school. In A. J. Visscher & R. Coe (Eds.), School improvement through performance feedback (pp. 191–218). Lisse, Holland: Swets & Zeitlinger.Google Scholar
  57. Tymms, P., Merrell, C., Hawker, D., & Nicholson, F. (2014). Performance indicators in primary schools: A comparison of performance on entry to school and the progress made in the first year in England and four other jurisdictions. Durham, UK: University of Durham.Google Scholar
  58. Tymms, P., Merrell, C., Henderson, B., Albone, S., & Jones, P. (2007). Links between children’s starting points and finishing points in primary school. Paper presented at 12th Conference of European Association for Research on Learning and Instruction, Budapest, Hungary.Google Scholar
  59. Tymms, P., Merrell, C., & Jones, P. (2004). Using baseline assessment data to make international comparisons. British Educational Research Journal, 30(5), 673–689.CrossRefGoogle Scholar
  60. Tymms, P., & Wylde, M. (2004). Basisprüfverfahren und Dauerbeobachtung in der Grundschule. [Basis test instrument and permanent monitoring in primary schools]. In G. Faust, M. Götz, H. Hacker, & H.-G. Roßbach (Eds.), Anschlussfähige Bildungsprozesse im Elementar- und Primarbereich (pp. 190–203). Bad Heilbrunn: Julius Klinkhardt.Google Scholar
  61. Van de Vijver, F. J. R., & Leung, K. (1997). Methods and data analysis of comparative research. In J. W. Berry, Y. H. Poortinga, & J. Pandey (Eds.), Handbook of cross cultural psychology (Vol. 1, pp. 257–300). Boston, MA: Allyn & Bacon.Google Scholar
  62. Vidmar, M. (2010). Dejavniki socialnega vedenja in učne uspešnosti v srednjem otroštvu [The precursors of social behavior and academic achievement in middle childhood. Unpublished doctoral dissertation]. Neobjavljena doktorska disertacija, Univerza v Ljubljani, Filozofska fakulteta, Oddelek za psihologijo, Ljubljana.Google Scholar
  63. Vidmar, M. (2011). Socialna kompetentnost in učna uspešnost v prvih razredih osnovne šole [Social competence and academic achievement in the first Grades]. Šolsko polje [School Field], 22(1–2), 31–54.Google Scholar
  64. Vidmar, M., & Tymms, P. (2009). Performance indicators in primary schools: on-entry baseline assessment and follow-up material (PIPS-BA): introducing PIPS into Slovenian context - background, translation, adaptation, and application of the assessment. Ljubljana: Pedagoški inštitut.Google Scholar
  65. Vidmar, M. & Zupančič, M. (2006). PIPS: Preizkus temeljnih kompetentnosti otrok ob vstopu v šolo – začetni preizkus in spremljanje [PIPS: On-Entry Baseline Assessment and Follow-up. Unpublished]. Neobjavljeno gradivo, Pedagoški inštitut, Ljubljana.Google Scholar
  66. Vidmar, M., & Zupančič, M. (2007a). PIPS: Preizkus temeljnih kompetentnosti otrok ob vstopu v šolo – dodatek [PIPS: Extension. Unpublished]. Neobjavljeno gradivo, Pedagoški inštitut, Ljubljana.Google Scholar
  67. Vidmar, M., & Zupančič, M. (2007b). Predloge za oceno doseženih standardov znanja v 2. razredu. Neobjavljeno gradivo [Attainment of Performance Standards in Slovene, Math and Nature & Society: 2nd Grade. Unpublished]. Neobjavljeno gradivo, Pedagoški inštitut, Ljubljana.Google Scholar
  68. Wegener, B. (1988). Kritik des Prestiges [Criticism of the prestige]. Opladen: Westdeutscher Verlag.CrossRefGoogle Scholar
  69. Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In K. J. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 281–324). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  70. Wildy, H., & Styles, I. (2008). Measuring what students entering school know and can do: PIPS Australia 2006–2007. Australasian Journal of Early Childhood, 33(4), 43–52.Google Scholar
  71. Wilkinson, J. E., Watt, J., Napuk, A., & Normand, B. (1998). Baseline assessment literature review and pre-school record keeping in Scotland. Interchange, 55, 4–19.Google Scholar
  72. Wu, A. D., Li, Z., & Zumbo, B. D. (2007). Decoding the meaning of factorial invariance and updating the practice of multi-group confirmatory factor analysis: a demonstration with TIMSS data. Practical Assessment, Research & Evaluation, 12(3), 1–26.Google Scholar
  73. Zupančič, M., & Kavčič, T. (2007a). Otroci od vrtca do šole: razvoj osebnosti in socialnega vedenja ter učna uspešnost prvošolcev [Children from preschool to school: the development of personality and social behaviour, and academic achievement in the first Grade]. Ljubljana: Znanstvenoraziskovalni inštitut Filozofske fakultete.Google Scholar
  74. Zupančič, M., & Kavčič, T. (2007b). Vzdolžna in sočasna napoved učnih dosežkov pri prvošolcih. [Longitudinal and concurrent prediction of academic achievement in the first Grade.]. Šolsko polje, 18(5/6), 141–170.Google Scholar
  75. Zupančič, M., & Kavčič, T. (2008). Dejavniki okolja, otrokovo socialno vedenje v vrtcu/šoli in učna uspešnost v prvem razredu. [Environmental factors, children’s social behavior in (pre)school and academic achievement in the first Grade.]. Šolsko polje, 19(1/2), 51–79.Google Scholar
  76. Zupančič, M. (2006). Predloge za oceno doseženih standardov znanja v 1. razredu. [Neobjavljeno gradivo.] [Attainment of Performance Standards in Slovene, Math and Nature & Society: 1st Grade. Unpublished.] Ljubljana: Filozofska fakulteta, Oddelek za psihologijo.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Maša Vidmar
    • 1
  • Frank Niklas
    • 2
  • Wolfgang Schneider
    • 2
  • Marcus Hasselhorn
    • 3
  1. 1.Educational Research InstituteLjubljanaSlovenia
  2. 2.University of WürzburgWürzburgGermany
  3. 3.German Institute for International Educational ResearchFrankfurt am MainGermany

Personalised recommendations