Skip to main content
Log in

Learning to solve story problems—supporting transitions between reality and mathematics

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

Applying mathematics to real problems is increasingly emphasized in school education; however, it is often complained that many students are not able to solve mathematical problems embedded in contexts. In order to solve story problems, a transition from a textual description to a mathematical notation has to be found, intra-mathematical calculations have to be performed, and the results have to be interpreted with respect to the described situation. On the one hand, it is often suggested to consider problems which are embedded in a context from the very beginning; on the other hand, step-by-step procedures at the beginning of learning processes are widely proposed. In the present work, it was tested experimentally whether starting a learning process in a “pure” intra-mathematical way (thus, without a textual description of a context) is more beneficial than starting a learning process with problems providing a very short context or with problems providing a detailed context, both with respect to objective measures and with respect to subjective measures. The results indicate that starting with intra-mathematical problems and starting with detailed story problems can both be very effective; however, interaction effects with prior knowledge have to be taken into account. With respect to motivational aspects, the results indicate that intra-mathematical problems and focused story problems are substantially more appreciated by the learners than detailed story problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84, 191–215.

    Article  Google Scholar 

  • Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117–148.

    Article  Google Scholar 

  • Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87–99. doi:10.1037/0021-9010.88.1.87.

    Article  Google Scholar 

  • Bergqvist, E., & Österholm, M. (2010). A theoretical model of the connection between the process of reading and the process of solving mathematical tasks. In Mathematics and mathematics education: Cultural and social dimensions. Proceedings of MADIF 7 (pp. 47–57). Svensk förening för matematikdidaktisk forskning, SMDF.

  • Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. Breiteig, I. Huntley, & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 3–14). New York: E. Horwood.

    Google Scholar 

  • Blum, W. (2007). Mathematisches Modellieren – zu schwer für Schüler und Lehrer? [Mathematical Modeling – too difficult for students and teachers?] In Beiträge zum Mathematikunterricht (pp. 3–12). Hildesheim: Franzbecker.

    Google Scholar 

  • Blum, W., Neubrand, M., Ehmke, T., Senkbeil, M., Jordan, A., Ulfig, F., et al. (2004). Mathematische Kompetenz [Mathematical competence]. In PISA-Konsortium Deutschland (Ed.), Der Bildungsstand der Jugendlichen in Deutschland – Ergebnisse des zweiten internationalen Vergleichs (pp. 47–92). Münster: Waxmann.

    Google Scholar 

  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. The International Journal on Mathematics Education, 38, 86–95. doi:10.1007/BF02655883.

    Google Scholar 

  • Borromeo Ferri, R. (2009). Zur Entwicklung des Verständnisses von Modellierung bei Studierenden [On the development of students’ understanding of modeling]. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 2009 (pp. 139–142). Münster: WTM.

    Google Scholar 

  • Büchter, A., & Leuders, T. (2005). Mathematikaufgaben selbst entwickeln. Lernen fördern – Leistung überprüfen [Developing mathematical problems by oneself. Fostering learning – checking performance]. Berlin: Cornelsen Scriptor.

    Google Scholar 

  • Deci, E. L., & Ryan, R. M. (1993). Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik [The self-determination theory of motivation and its importance for pedagogy]. Zeitschrift für Pädagogik, 39, 223–238.

    Google Scholar 

  • Fite, G. (2002). Reading and math: What is the connection? A short review of the literature. Kansas Science Teacher, 14, 7–11.

    Google Scholar 

  • Galbraith, P. L., & Clatworthy, N. J. (1990). Beyond standard models—meeting the challenge of modelling. Educational Studies in Mathematics, 21, 137–163.

    Article  Google Scholar 

  • Greer, B. (1997). Modelling reality in mathematics classrooms: the case of word problems. Learning and Instruction, 7, 293–307.

    Article  Google Scholar 

  • Jonassen, D. H. (2003). Designing research-based instruction for story problems. Educational Psychology Review, 15, 267–296.

    Article  Google Scholar 

  • Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom—problems and opportunities. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Applications and modelling in mathematics education. The 14th ICMI study (pp. 99–108). New York: Springer.

    Chapter  Google Scholar 

  • Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539. doi:10.1007/s10648-007-9054-3.

    Article  Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31. doi:10.1207/S15326985EP3801_4.

    Article  Google Scholar 

  • Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13, 129–164.

    Article  Google Scholar 

  • Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling—task analyses, student competencies, and teacher interventions. Journal für Mathematik-Didaktik, 31, 119–141. doi:10.1007/s13138-010-0006-y.

    Article  Google Scholar 

  • Maaß, K. (2006). What are modelling competencies? The International Journal on Mathematics Education, 38, 113–142.

    Google Scholar 

  • Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problems. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 29–53). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • OECD. (2003). The PISA 2003 assessment framework—Mathematics, reading, science and problem solving knowledge and skills. Paris: OECD.

    Google Scholar 

  • Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86.

    Article  Google Scholar 

  • Prenzel, M., Drechsel, B., Kliewe, A., Kramer, K., & Röber, N. (2000). Lernmotivation in der Aus- und Weiterbildung: Merkmale und Bedingungen [Learning motivation in education and professional training: Features and preconditions]. In C. Harteis, H. Heid, & S. Kraft (Eds.), Kompendium Weiterbildung. Aspekte und Perspektiven betrieblicher Personal- und Organisationsentwicklung (pp. 163–173). Opladen: Leske + Budrich.

    Google Scholar 

  • Rakoczy, K., Klieme, E., & Pauli, C. (2008). Die Bedeutung der wahrgenommenen Unterstützung motivationsrelevanter Bedürfnisse und des Alltagsbezugs im Mathematikunterricht für die selbstbestimmte Motivation [The impact of the perceived support of basic psychological needs and of the perceived relevance of contents on students’ self-determined motivation in mathematics instruction]. Zeitschrift für Pädagogische Psychologie, 22, 25–35. doi:10.1024/1010-0652.22.1.25.

    Article  Google Scholar 

  • Reinmann, G., & Mandl, H. (2006). Unterrichten und Lernumgebungen gestalten [Teaching and designing learning environments]. In A. Krapp & B. Weidenmann (Eds.), Pädagogische Psychologie (pp. 613–658). Weinheim: Beltz PVU.

    Google Scholar 

  • Reusser, K., & Stebler, R. (1997). Every word problem has a solution—the social rationality of mathematical modeling in schools. Learning and Instruction, 7, 309–327.

    Article  Google Scholar 

  • Rheinberg, F., Vollmeyer, R., & Burns, B. D. (2001). FAM: Ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen [FAM: A questionnaire to determine current motivation in learning and performance situations]. Diagnostica, 47, 57–66.

    Article  Google Scholar 

  • Schukajlow, S., & Blum, W. (2011). Zum Einfluss der Klassengröße auf Modellierungskompetenz, Selbst- und Unterrichtswahrnehmungen von Schülern in selbständigkeitsorientierten Lehr-Lernformen [On the effect of class size on modeling competency and self-reported perceptions of students in self-regulated learning environments]. Journal für Mathematik-Didaktik, 32, 133–151. doi:10.1007/s13138-011-0025-3.

    Article  Google Scholar 

  • Van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: the 4C/ID*-model. Educational Technology Research and Development, 50, 39–64.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 273–294.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., & Vierstraete, H. (1999). Upper elementary school pupils’ difficulties in modeling and solving nonstandard additive word problems involving ordinal numbers. Journal for Research in Mathematics Education, 30, 265–285.

    Article  Google Scholar 

  • Vilenius-Tuohimaa, P. M., Aunola, K., & Nurmi, J. E. (2008). The association between mathematical word problems and reading comprehension. Educational Psychology, 28, 409–426. doi:10.1080/01443410701708228.

    Article  Google Scholar 

  • Visser, J., & Keller, J. M. (1990). The clinical use of motivational messages: an inquiry into the validity of the ARCS model of motivational design. Instructional Science, 19, 467–500.

    Article  Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (2010). Modelling with heuristic worked examples in the KOMMA learning environment. Journal für Mathematik-Didaktik, 31, 143–165. doi:10.1007/s13138-010-0008-9.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Central Research Development Fund (CRDF) of the University of Bremen and by the German Research Foundation (DFG) under contract number GR2706/4-1. The author would like to thank these institutions for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia S. Große.

Additional information

Dr. Cornelia S. Große. Group of Computer Architecture, Institute of Computer Science, University of Bremen, 28359 Bremen, Germany. Email: cornelia.grosse@uni-bremen.de

Current themes of research:

• Learning to solve story problems and modeling problems

• Learning with multiple solution methods

• Learning with correct and incorrect worked examples

Most relevant publications in the field of Psychology of Education:

Große, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: Can this foster learning outcomes? Learning and Instruction, 17, 612–634.

Große, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 16, 122–138.

Große, C. S., & Renkl, A. (2005). Example-based learning with multiple solution methods: effects on learning processes and learning outcomes. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 839–844). Mahwah, NJ: Erlbaum.

Große, C. S. (2005). Lernen mit multiplen Lösungswegen [Learning with multiple solution methods]. Münster: Waxmann.

Renkl, A., Atkinson, R. K., & Große, C. S. (2004). How fading worked solution steps works—a cognitive load perspective. Instructional Science, 32, 59–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Große, C.S. Learning to solve story problems—supporting transitions between reality and mathematics. Eur J Psychol Educ 29, 619–634 (2014). https://doi.org/10.1007/s10212-014-0217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10212-014-0217-6

Keywords

Navigation