Altuna CA (1983) Sobre la estructura de las construcciones de Ctenomys pearsoni Lessa y Langguth, 1983 (Rodentia, Octodontidae). Resúmenes y Comun Las Jornadas Ciencias Nat 3:70
Google Scholar
Andersen DC (1988) Tunnel-construction methods and foraging path of a fossorial herbivore, Geomys bursarius. J Mammal 69:565–582
Article
Google Scholar
Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Zeitschrift Für Säugetierkd 57:163–168
Google Scholar
Antunes PC (2009) Uso de habitat e partição do espaço entre três espécies de pequenos mamíferos simpátricos no pantanal sul-matogrossense. Universidade Federal do Moto Grosso do Sul, Brasil
Google Scholar
Barros RCH, Abe AS, Cárnio EC, Branco LGS (2004) Regulation of breathing and body temperature of a burrowing rodent during hypoxic-hypercapnia. Comp Biochem Physiol - A Mol Integr Physiol 138:97–104. https://doi.org/10.1016/j.cbpb.2004.03.011
CAS
Article
PubMed
Google Scholar
Batalha MA, Mantovani W (2000) Reproductive phenological patterns of cerrado plant species at the Pé-de-Gigante Reserve (Santa Rita do Passa Quatro, SP, Brazil): a comparison between the herbaceous and woody floras. Rev Bras Biol 60:129–145. https://doi.org/10.1590/S0034-71082000000100016
CAS
Article
PubMed
Google Scholar
Begall S, Burda H, Schleich CE (2007) Subterranean rodents: news from underground. Springer, Berlin Heidelberg
Book
Google Scholar
Benedix JH (1993) Area-restricted search by the plains pocket gopher (Geomys bursarius) in tallgrass prairie habitat. Behav Ecol 4:318–324. https://doi.org/10.1093/beheco/4.4.318
Article
Google Scholar
Bezerra AMR, de Oliveira JA, Bonvicino CR (2016) Clyomys laticeps (Rodentia: Echimyidae). Mamm Species 48:83–90. https://doi.org/10.1093/mspecies/sew009
Article
Google Scholar
Bronner GN (1992) Burrow system characteristics of seven small mammal species (Mammalia: Insectivora; Rodentia; Carnivora). Koedoe - African Prot. Area Conserv Sci 35:125–128
Google Scholar
Bueno AA, Lapenta MJ, Oliveira F, Motta-Júnior JC (2004) Association of the “IUCN vulnerable” spiny rat Clyomys bishopi (Rodentia: Echimyidae) with palm trees and armadillo burrows in southeastern Brazil. Rev Biol Trop 52:1009–1011
PubMed
Google Scholar
Burns JA, Flath DL, Clark TW (1989) On the structure and function of white-tailed prairie dog burrows. Gt Basin Nat 49:517–524
Google Scholar
Butynski TM, Mattingly R (1979) Burrow structure and fossorial ecology of the springhare Pedetes capensis in Botswana. Afr J Ecol 17:205–215. https://doi.org/10.1111/j.1365-2028.1979.tb00257.x
Article
Google Scholar
Caetano-Chang MR, Wu FT (2006) Arenitos flúvio-eólicos da porção superior da Formação Pirambóia no centro-leste paulista. Rev Bras Geociências 36:296–304
Article
Google Scholar
Cameron GN, Spencer SR, Eshelman BD et al (1988) Activity and burrow structure of Attwater’s pocket gopher (Geomys attwateri). J Mammal 69:667–677
Article
Google Scholar
Camilo AR, Tomas WM, Souza FL De, Bolzan A (2010) Ocupação de Manchas Florestais no Pantanal por duas Espécies de Roedores: Clyomys laticeps e Thrichomys pachyurus. In: 5° Simpósio sobre recursos naturais e socioeconômicos do Pantanal. Corumbá - MS. 1–6
Cantano LMR, Luchesi LC, Takata JT, Monticelli PF (2023) Behavioral repertoire of the Brazilian spiny-rats, Trinomys setosus and Clyomys laticeps: different levels of sociality. Brazilian J Biol 83:1–17. https://doi.org/10.1590/1519-6984.241164
Article
Google Scholar
Coetzee CG, Jackson TP (1999) The comparative behaviour and ecology of Parotomys brantsii and P. littledalei (Mammalia, Rodentia, Otomyinae). Journal-Namibia Sci Soc 47:87–106
Google Scholar
de Almeida LB, Galetti M (2007) Seed dispersal and spatial distribution of Attalea geraensis (Arecaceae) in two remnants of cerrado in southeastern Brazil. Acta Oecologica 32:180–187. https://doi.org/10.1016/j.actao.2007.04.001
Article
Google Scholar
de Graaff G, Nel JAJ (1965) On the tunnel system of Brants’ karroo rat, Parotomys brantsi in the Kalahari Gemsbok National Park. Koedoe 8:136–139
Article
Google Scholar
da Silva DA (2005) Levantamento do meio físico das estações Ecológica e Experimental de Itirapina. Rev Do Inst Florest 17:113–128
Google Scholar
Ebensperger LA (1998) Sociality in rodents: the New World fossorial hystricognaths as study models. Rev Chil Hist Nat 71:65–77
Google Scholar
Ebensperger LA (2001) A review of the evolutionary causes of rodent group-living. Acta Theriol (warsz) 46:115–144. https://doi.org/10.1007/BF03192423
Article
Google Scholar
Ebensperger LA, Blumstein DT (2006) Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behav Ecol 17:410–418. https://doi.org/10.1093/beheco/arj048
Article
Google Scholar
Fabre P-H, Hautier L, Dimitrov D, Douzery EJP (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12:88. https://doi.org/10.1186/1471-2148-12-88
Article
PubMed
PubMed Central
Google Scholar
Ferrando CPR, Leiner NO (2018) Above-ground activity patterns of the semi-fossorial spiny rat Clyomys laticeps. Ethol Ecol Evol 30:373–383. https://doi.org/10.1080/03949370.2017.1371247
Article
Google Scholar
Galiano D, Kubiak BB, Menezes LS et al (2016) Wet soils affect habitat selection of a solitary subterranean rodent (Ctenomys minutus) in a neotropical region. J Mammal 97:1095–1101. https://doi.org/10.1093/jmammal/gyw062
Article
Google Scholar
Ghobrial LI, Nour TA (1975) The physiological adaptations of desert rodents. In: Prakash I, Ghosh PK (eds) Rodents in desert environments, vol 28. Springer, Dordrecht, pp 413–444
Chapter
Google Scholar
Gottsberger G, Silberbauer-Gottsberger ILSE (1983) Dispersal and distribution in the cerrado vegetation of Brazil. Sonderbd Natuwiss Ver Hambg 7:315–352
Google Scholar
Hansell MH (1993) The ecological impact of animal nests and burrows. Funct Ecol 7:5–12
Article
Google Scholar
Herbst M, Bennett NC (2006) Burrow architecture and burrowing dynamics of the endangered Namaqua dune mole rat (Bathyergus janetta) (Rodentia: Bathyergidae). J Zool 270:420–428. https://doi.org/10.1111/j.1469-7998.2006.00151.x
Article
Google Scholar
Hirata R, Gesicki A, Sracek O et al (2011) Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo state, Brazil. J South Am Earth Sci 31:444–456. https://doi.org/10.1016/j.jsames.2011.03.006
CAS
Article
Google Scholar
Holtze S, Braude S, Lemma A et al (2018) The microenvironment of naked mole-rat burrows in East Africa. Afr J Ecol 56:279–289. https://doi.org/10.1111/aje.12448
Article
Google Scholar
Jackson TP (2000) Adaptation to living in an open arid environment: lessons from the burrow structure of the two southern African whistling rats, Parotomys brantsii and P. littledalei. J Arid Environ 46:345–355. https://doi.org/10.1006/jare.2000.0683
Article
Google Scholar
Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem organisms engineers. Oikos 69:373–386. https://doi.org/10.2307/3545850
Article
Google Scholar
Kinlaw A (1999) A review of burrowing by semi-fossorial vertebrates in arid environments. J Arid Environ 41:127–145. https://doi.org/10.1006/jare.1998.0476
Article
Google Scholar
Lamberto J, Leiner NO (2019) Broad-headed spiny rats (Clyomys laticeps) as ecosystem engineers in the Brazilian savannah. J Zool 309:60–68. https://doi.org/10.1111/jzo.12684
Article
Google Scholar
Lee PC (1994) Chapter 9 - social structure and evolution. In: Slater PJB, Halliday TR, Barrett P (eds) Behaviour and evolution. Cambridge University Press, New York, NY, pp 266–303
Google Scholar
Leite MB, Xavier RO, Oliveira PTS et al (2018) Groundwater depth as a constraint on the woody cover in a neotropical savanna. Plant Soil 426:1–15. https://doi.org/10.1007/s11104-018-3599-4
CAS
Article
Google Scholar
Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84:661–667. https://doi.org/10.1139/z06-040
Article
Google Scholar
Luna F, Antinuchi CD, Busch C (2002) Digging energetics in the South American rodent Ctenomys talarum (Rodentia, Ctenomyidae). Can J Zool 80:2144–2149. https://doi.org/10.1139/z02-201
Article
Google Scholar
Luo Z-X, Meng Q-J, Ji Q et al (2015) Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science (80-) 347:760–764. https://doi.org/10.1126/science.1260880
CAS
Article
Google Scholar
Mankin PC, Getz LL (1994) Burrow morphology as related to social organization of Microtus ochrogaster. J Mammal 75:492–499
Article
Google Scholar
Melchor RN, Genise JF, Umazano AM, Superina M (2012) Pink fairy armadillo meniscate burrows and ichnofabrics from Miocene and Holocene interdune deposits of Argentina: palaeoenvironmental and palaeoecological significance. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:149–170. https://doi.org/10.1016/j.palaeo.2012.06.026
Article
Google Scholar
Nevo E (1995) Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol (Warsz) Suppl. 3:9–31. https://doi.org/10.4098/AT.arch.95-43
Nowak RM (1991) Walker’s mammals of the world, 5th edn. Johns Hop- kins Univ. Press, Baltimore
Google Scholar
Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the cerrado biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 91–120
Chapter
Google Scholar
Oliveira PTS, Leite MB, Mattos T et al (2017) Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology 10:e1759. https://doi.org/10.1002/eco.1759
Article
Google Scholar
Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93
Article
Google Scholar
Reichman OJ, Smith SC (1990) Burrows and burrowing behaviour by mammals. Current mammalogy. Plenum Press, New York and London, pp 197–244
Google Scholar
Reichman OJ, Wicklow DT, Rebar C (1985) Ecological and mycological characteristics of caches in the mounds of Dipodomys spectabilis. J Mammal 66:643–651
Article
Google Scholar
Romañach SS, Reichman OJ, Seabloom EW (2005) Seasonal influences on burrowing activity of a subterranean rodent, Thomomys bottae. J Zool 266:319–325. https://doi.org/10.1017/S0952836905006941
Article
Google Scholar
Šklíba J, Mazoch V, Lövy M, Šumbera R (2012) A maze-lover’s dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mamm Biol 77:420–427. https://doi.org/10.1016/j.mambio.2012.06.004
Article
Google Scholar
Šumbera R, Šklíba J, Elichová M et al (2008) Natural history and burrow system architecture of the silvery mole-rat from Brachystegia woodland. J Zool 274:77–84. https://doi.org/10.1111/j.1469-7998.2007.00359.x
Article
Google Scholar
Terborgh J (1986) Community aspects of frugivory in tropical forests. Springer, Dordrecht, pp 371–384
Google Scholar
Thomas HG, Bateman PW, Scantlebury DM, Bennett NC (2012a) Seasonal effects on digging activity and burrow architecture in the Cape dune mole-rat, Bathyergus suillus (Rodentia: Bathyergidae). African Zool 47:332–340. https://doi.org/10.3377/004.047.0222
Article
Google Scholar
Thomas HG, Bateman PW, Scantlebury M, Bennett NC (2012b) Season but not sex influences burrow length and complexity in the non-sexually dimorphic solitary Cape mole-rat (Rodentia: Bathyergidae). J Zool 288:214–221. https://doi.org/10.1111/j.1469-7998.2012.00944.x
Article
Google Scholar
Thomas HG, Scantlebury M, Swanepoel D et al (2013) Seasonal changes in burrow geometry of the common mole rat (Rodentia: Bathyergidae). Naturwissenschaften 100:1023–1030. https://doi.org/10.1007/s00114-013-1105-7
CAS
Article
PubMed
Google Scholar
Trovati RG (2009) Mamíferos escavadores (Dasypodidae e Echimyidae) do cerrado da região de Itirapina e seu papel em comunidades de vertebrados terrestres. Universidade de São Paulo
Trovati RG (2015) Differentiation and characterisation of burrows of two species of armadillos in the Brazilian cerrado. Rev Chil Hist Nat. https://doi.org/10.1186/s40693-015-0049-z
Article
Google Scholar
Vieira MV (1997) Dynamics of a rodent assemblage in a cerrado of southeast Brazil. Rev Bras Biol 57:99–107
Google Scholar
Vleck D (1981) Burrow structure and foraging costs in the fossorial rodent, Thomomys bottae. Oecologia 49:391–396. https://doi.org/10.1007/BF00347605
CAS
Article
PubMed
Google Scholar
White CR (2005) The allometry of burrow geometry. J Zool London 265:395–403. https://doi.org/10.1017/S0952836905006473
Article
Google Scholar
White JA, Geluso K (2012) Seasonal link between food hoarding and burrow use in a nonhibernating rodent. J Mammal 93:149–160. https://doi.org/10.1644/11-MAMM-A-031.1
Article
Google Scholar
Xavier RDO, Leite MB, da Silva Matos DM (2019) Phenological and reproductive traits and their response to environmental variation differ among native and invasive grasses in a neotropical savanna. Biol Invasions 21:2761–2779. https://doi.org/10.1007/s10530-019-02013-w
Article
Google Scholar
Zanchetta D, Ferreira Silva CE, Reis CM et al (2006) Plano de manejo integrado das Unidades de Itirapina - 1. revisão. Itirapina, SP. Secretaria do Meio Ambiente, São Paulo: Instituto Florestal
Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects modelling for nested data. In: Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer, New York, NY, New York, NY, pp 101–142