Skip to main content

Social network predicts loss of fertilizations in nesting males of a fish with alternative reproductive tactics

Abstract

Alternative reproductive tactics (ARTs) evolve when there is strong intra-sexual competition between conspecifics for access to mates. Typically, larger “bourgeois” males reproduce by securing the access to reproductive resources while smaller “parasitic” males reproduce by stealing fertilizations from larger males. A number of factors can influence the reproductive success of each tactic, including intrinsic (e.g. size) and extrinsic (e.g. tactic relative frequency) variables. An example where plastic ARTs occur is the peacock blenny Salaria pavo, with large males reproducing by defending nests and attracting females (bourgeois tactic) and small males reproducing by achieving sneaked fertilizations (parasitic tactic). In this study, we conducted field observations on individually tagged animals to determine their social network and collected eggs from 11 nests to determine the fertilization success of each male tactic. Paternity estimates for 550 offspring indicated an average fertilization success for nest-holder males of 95%. Nest-holder male morphological traits and social network parameters were tested as predictors of fertilization success, but only the number of sneakers present in the nest-holder’s social networks was found to be a predictor of paternity loss. Although male morphological traits had been previously found to be strongly correlated with reproductive success of nest-holder males, as measured by the number of eggs collected in the male’s nest, no correlation was found between any of the measured morphological traits and fertilization success for these males. The results suggest a stronger influence of the social environment than of morphological variables in the proportion of lost fertilizations by nest-holder males of this species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Almada VC, Gonçalves EJ, Santos AJ, Baptista C (1994) Breeding ecology and nest aggregations in a population of Salaria pavo (Pisces: Blenniidae) in an area where nest sites are very scarce. J Fish Biol 45:819–830. doi:10.1111/j.1095-8649.1994.tb00947.x

    Article  Google Scholar 

  2. Almada VC, Santos RS (1995) Parental care in the rocky intertidal: a case study of adaptation and exaptation in Mediterranean and Atlantic blennies. Rev Fish Biol Fish 5:23–37. doi:10.1007/BF01103364

    Article  Google Scholar 

  3. Alonzo SH (2010) Social and coevolutionary feedbacks between mating and parental investment. Trends Ecol Evol 25:99–108. doi:10.1016/j.tree.2009.07.012

    Article  PubMed  Google Scholar 

  4. Alonzo SH (2008) Female mate choice copying affects sexual selection in wild populations of the ocellated wrasse. Anim Behav 75:1715–1723. doi:10.1016/j.anbehav.2007.09.031

    Article  Google Scholar 

  5. Alonzo SH, Heckman KL (2010) The unexpected but understandable dynamics of mating, paternity and paternal care in the ocellated wrasse. Proc R Soc B 277:115–122. doi:10.1098/rspb.2009.1425

    Article  PubMed  Google Scholar 

  6. Avise JC, Jones AG, Walker D, DeWoody JA (2002) Genetic mating systems and reproductive natural histories of fishes: lessons for ecology and evolution. Annu Rev Genet 36:19–45. doi:10.1146/annurev.genet.36.030602.090831

    CAS  Article  PubMed  Google Scholar 

  7. Barata EN, Serrano RM, Miranda A, Nogueira R, Hubbard PC, Canário AVM (2008) Putative pheromones from the anal glands of male blennies attract females and enhance male reproductive success. Anim Behav 75:379–389. doi:10.1016/j.anbehav.2007.05.018

    Article  Google Scholar 

  8. Bessert ML, Brozek J, Ortí G (2007) Impact of nest substrate limitations on patterns of illegitimacy in the fathead minnow, Pimephales promelas (Cypriniformes: Cyprinidae). J Hered 98:716–722. doi:10.1093/jhered/esm092

    Article  PubMed  Google Scholar 

  9. Borgatti SP (2002) NetDraw: graph visualization software. Analytic Technologies, Harvard

    Google Scholar 

  10. Borgatti SP, Everett MG, Freeman LC (2002) Ucinet 6 for Windows: software for social network analysis. Analytic Technologies, Harvard

    Google Scholar 

  11. Brockmann HJ (2001) The evolution of alternative strategies and tactics. Adv Study Behav 30:1–51. doi:10.1016/S0065-3454(01)80004-8

    Article  Google Scholar 

  12. Cardoso SD, Gonçalves D, Robalo JI, Almada VC, Canário AVM, Oliveira RF (2013) Efficient isolation of polymorphic microsatellites from high-throughput sequence data based on number of repeats. Mar Genomics 11:11–16. doi:10.1016/j.margen.2013.04.002

    Article  PubMed  Google Scholar 

  13. Cogliati KM, Neff BD, Balshine S (2013) High degree of paternity loss in a species with alternative reproductive tactics. Behav Ecol Sociobiol 67:399–408. doi:10.1007/s00265-012-1460-y

    Article  Google Scholar 

  14. Coleman SW, Jones AG (2011) Patterns of multiple paternity and maternity in fishes. Biol J Linn Soc 103:735–760. doi:10.1111/j.1095-8312.2011.01673.x

    Article  Google Scholar 

  15. Fagundes T, Gonçalves DM, Oliveira RF (2007) Female mate choice and mate search tactics in a sex role reversed population of the peacock blenny Salaria pavo (Risso, 1810). J Fish Biol 71:77–89. doi:10.1111/j.1095-8649.2007.01466.x

    Article  Google Scholar 

  16. Fagundes T, Simões MG, Saraiva JL, Ros AFH, Gonçalves D, Oliveira RF (2015) Birth date predicts alternative life history pathways in a fish with sequential reproductive tactics. Funct Ecol 29:1533–1542. doi:10.1111/1365-2435.12465

    Article  Google Scholar 

  17. Fishelson L (1963) Observations on littoral fishes of Israel. I. Behaviour of Blennius pavo Risso (Teleostei: Blenniidae). Isr J Zool 12:67–80. doi:10.1080/00212210.1963.10688172

    Google Scholar 

  18. Giacomello E, Marchini D, Rasotto MB (2006) A male sexually dimorphic trait provides antimicrobials to eggs in blenny fish. Biol Lett 2:330–333. doi:10.1098/rsbl.2006.0492

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821–7826. doi:10.1073/pnas.122653799

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Gonçalves D, Fagundes T, Oliveira R (2003) Reproductive behaviour of sneaker males of the peacock blenny. J Fish Biol 63:528–532. doi:10.1046/j.1095-8649.2003.00157.x

    Article  Google Scholar 

  21. Gonçalves D, Matos R, Fagundes T, Oliveira R (2005) Bourgeois males of the peacock blenny, Salaria pavo, discriminate female mimics from females? Ethology 111:559–572. doi:10.1111/j.1439-0310.2005.01069.x

    Article  Google Scholar 

  22. Gonçalves DM, Barata EN, Oliveira RF, Canário AVM, Goncalves DM, Canario AVM (2002a) The role of male visual and chemical cues on the activation of female courtship behaviour in the sex-role reversed peacock blenny. J Fish Biol 61:96–105. doi:10.1006/jfbi.2002.2026

    Article  Google Scholar 

  23. Gonçalves DM, Oliveira RF (2003) Time spent close to a sexual partner as a measure of female mate preference in a sex-role-reversed population of the blenny Salaria pavo (Risso) (Pisces: Blenniidae). Acta Ethol 6:1–5. doi:10.1007/s10211-003-0083-8

    Article  Google Scholar 

  24. Gonçalves DM, Simoes PC, Chumbinho AC, Correia MJ, Fagundes T, Oliveira RF (2002b) Fluctuating asymmetries and reproductive success in the peacock blenny. J Fish Biol 60:810–820. doi:10.1006/jfbi.2002.1877

    Article  Google Scholar 

  25. Gonçalves EJ, Almada VC, Oliveira RF, Santos AJ (1996) Female mimicry as a mating tactic in males of the blenniid fish Salaria pavo. J Mar Biol Assoc UK 76:529–538. doi:10.1017/S0025315400030721

    Article  Google Scholar 

  26. Gross MR (1996) Alternative reproductive strategies and tactics diversity within sexes. Trends Ecol Evol 11:92–98. doi:10.1016/0169-5347(96)81050-0

    CAS  Article  PubMed  Google Scholar 

  27. Guillemaud T, Almada F, Santos RS, Cancela ML (2000) Interspecific utility of microsatellites in fish: a case study of (CT)n and (GT)n markers in the shanny Lipophrys pholis (Pisces: Blenniidae) and their use in other Blennioidei. Mar Biotechnol 2:248–253. doi:10.1007/s101269900029

    CAS  Article  PubMed  Google Scholar 

  28. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  29. Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948. doi:10.1111/j.1420-9101.2008.01540.x

    Article  PubMed  Google Scholar 

  30. Mackiewicz M, Porter BA, Dakin EE, Avise JC (2005) Cuckoldry rates in the Molly Miller (Scartella cristata; blenniidae), a hole-nesting marine fish with alternative reproductive tactics. Mar Biol 148:213–221. doi:10.1007/s00227-005-0010-9

    Article  Google Scholar 

  31. Makagon MM, McCowan B, Mench JA (2012) How can social network analysis contribute to social behavior research in applied ethology? Appl Anim Behav Sci 138:152–161. doi:10.1016/j.applanim.2012.02.003

    Article  Google Scholar 

  32. Moore MC (1991) Application of organization-activation theory to alternative male reproductive strategies: a review. Horm Behav 25:154–179. doi:10.1016/0018-506X(91)90048-M

    CAS  Article  PubMed  Google Scholar 

  33. Neff BD (2001) Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus). J Hered 92:111–119. doi:10.1093/jhered/92.2.111

    CAS  Article  PubMed  Google Scholar 

  34. Neff BD, Repka J, Gross MR (2000a) Parentage analysis with incomplete sampling of candidate parents and offspring. Mol Ecol 9:515–528. doi:10.1046/j.1365-294x.2000.00889.x

    CAS  Article  PubMed  Google Scholar 

  35. Neff BD, Repka J, Gross MR (2000b) Statistical confidence in parentage analysis with incomplete sampling: how many loci and offspring are needed? Mol Ecol 9:529–539. doi:10.1046/j.1365-294x.2000.00888.x

    CAS  Article  PubMed  Google Scholar 

  36. Oliveira RF (2006) Neuroendocrine mechanisms of alternative reproductive tactics in fish. In: Sloman KA, Wilson RW, Balshine S (eds) Fish physiology: behaviour and physiology of fish. Elsevier, New York, pp 297–357

    Google Scholar 

  37. Oliveira RF, Almada VC, Forsgren E, Gonçalves EJ (1999) Temporal variation in male traits, nesting aggregations and mating success in the peacock blenny. J Fish Biol 54:499–512. doi:10.1111/j.1095-8649.1999.tb00631.x

    Article  Google Scholar 

  38. Ota K, Awata S, Morita M, Yokoyama R, Kohda M (2014) Territorial males can sire more offspring in nests with smaller doors in the cichlid Lamprologus lemairii. J Hered 105:416–422. doi:10.1093/jhered/esu009

    Article  PubMed  Google Scholar 

  39. Ota K, Hori M, Kohda M (2012) Changes in reproductive life-history strategies in response to nest density in a shell-brooding cichlid, Telmatochromis vittatus. Naturwissenschaften 99:23–31. doi:10.1007/s00114-011-0864-2

    CAS  Article  PubMed  Google Scholar 

  40. Patzner RA (1984) Individual tagging of small fish. Aquaculture 40:251–253. doi:10.1016/0044-8486(84)90192-3

    Article  Google Scholar 

  41. Patzner RA, Seiwald M, Adlgasser M, Kaurin G (1986) The reproduction of Blennius pavo (Teleostei, Blenniidae) V. Reproductive behavior in natural environment. Zool Anz 216:338–350

    Google Scholar 

  42. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/

    Google Scholar 

  43. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  44. Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  45. Saraiva JL, Barata EN, Canário AVM, Oliveira RF (2009) The effect of nest aggregation on the reproductive behaviour of the peacock blenny Salaria pavo. J Fish Biol 74:754–762. doi:10.1111/j.1095-8649.2008.02153.x

    CAS  Article  PubMed  Google Scholar 

  46. Saraiva JL, Gonçalves D, Oliveira RF (2013) Ecological modulation of reproductive behaviour in the peacock blenny: a mini-review. Fish Physiol Biochem 39:85–89. doi:10.1007/s10695-012-9658-5

    CAS  Article  PubMed  Google Scholar 

  47. Taborsky M (1994) Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Adv Study Behav 23:1–100. doi:10.1016/S0065-3454(08)60351-4

    Article  Google Scholar 

  48. Taborsky M (1997) Bourgeois and parasitic tactics: do we need collective, functional terms for alternative reproductive behaviours? Behav Ecol Sociobiol 41:361–362. doi:10.1007/s002650050396

    Article  Google Scholar 

  49. Taborsky M, Oliveira RF, Brockmann HJ (2008) The evolution of alternative reproductive tactics: concepts and questions. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 1–21

    Chapter  Google Scholar 

  50. Trivers RL (1972) Parental investment and sexual selection. In: Campbell BG (ed) Sexual selection and the descent of man. Aldine Press, Chicago, pp 136–179

    Google Scholar 

  51. Wacker S, Amundsen T, Forsgren E, Mobley KB (2014) Within-season variation in sexual selection in a fish with dynamic sex roles. Mol Ecol 23:3587–3599. doi:10.1111/mec.12826

    Article  PubMed  Google Scholar 

  52. Westernhagen HV (1983) Observations on the reproductive and larval biology of Blennius pavo (Pisces: Teleostei). Helgoländer Meeresuntersuchungen 36:323–335. doi:10.1007/BF01983635

    Article  Google Scholar 

  53. Westneat DF, Sherman PW (1993) Parentage and the evolution of parental behavior. Behav Ecol 4:66–77. doi:10.1093/beheco/4.1.66

    Article  Google Scholar 

  54. Zander CD (1986) Blenniidae. In: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E (eds) Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris, pp 1096–1112

Download references

Acknowledgements

We would like to thank António José dos Santos and João Daniel from the Developmental Psychology Unit at ISPA-Instituto Universitário for their help with the social network analysis; the late Vitor Almada and Joana Robalo for discussions on paternity estimate approaches in this species; and the editor, Peter K. McGregor, and the two anonymous reviewers for their comments that helped to improve the manuscript. This study was supported by the research grant EXCL/BIA-ANM/0549/2012 from the Portuguese Foundation for Science and Technology (FCT) and by grant no. 012/2012/A1 from the Macao Science and Technology Development Fund (FDCT). During the writing of this manuscript, S.D.C. was being supported by an FCT grant (SFRH/BD/89072/2012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rui F. Oliveira.

Ethics declarations

Ethical approval

All animal protocols were performed in accordance with accepted veterinary practice under a “Group-1” licence issued by the “Direcção-Geral de Veterinária, Ministério da Agricultura, do Desenvolvimento Rural e das Pescas”, Portugal.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardoso, S.D., Faustino, A.I., Costa, S.S. et al. Social network predicts loss of fertilizations in nesting males of a fish with alternative reproductive tactics. acta ethol 20, 59–68 (2017). https://doi.org/10.1007/s10211-016-0249-9

Download citation

Keywords

  • Salaria pavo
  • Social network analysis
  • Paternity estimates
  • Blenniidae
  • Fertilization success