Advertisement

acta ethologica

, Volume 18, Issue 3, pp 255–263 | Cite as

The importance of syntax in a dynamic visual signal: recognition of jacky dragon displays depends upon sequence

  • Kevin L. WooEmail author
  • Guillaume Rieucau
Original Paper

Abstract

It is well established that recognition of complex acoustic signals, such as bird song, is dependent upon the temporal ordering of signal units or syntax. Much less is known about functionally analogous visual displays. The jacky dragon (Amphibolurus muricatus) is a native Australian agamid lizard with a highly stereotyped visual display made up of three discrete motor patterns. We conducted a playback experiment using high-resolution computer animations of conspecifics to test the importance of temporal order for signal efficacy. Lizards were shown three different life-sized simulated animations of conspecific differing in their skin texture and morphology signatures ranging from highly natural to abnormal. We evaluated signal recognition and assessed the relative importance of syntax and morphology. Our results showed that signal recognition is highly sensitive to syntax and this largely determines the observers’ behavioural responses. Stimuli with abnormal texture and shape were highly effective, as long as the natural order of motor patterns was preserved. Display recognition in jacky lizards hence depends upon syntax in just the same way as temporally constrained signals in other modalities.

Keywords

Jacky dragon Amphibolurus muricatus Syntax Morphology Visual display Computer animation 

Notes

Acknowledgments

KLW was supported by the Macquarie University Centre for the Integrative Study of Animal Behaviour Postgraduate Research Scholarship, Australian Research Council (project no. DP0345643) and SUNY Empire State College Faculty Development Award. GR was supported by a postdoctoral fellowship from the Institute of Marine Research and by the Norwegian Research Council (grant 204229/F20). Permission to conduct the study was granted by the New South Wales National Parks and Wildlife Services (S11024) and the Macquarie University Animal Ethics Committee (protocol no. 2006/012).

References

  1. Arnold K, Zuberbühler K (2006) Language evolution: semantic combinations in primate calls. Nature 441(7091):303–303CrossRefPubMedGoogle Scholar
  2. Balaban E (1988a) Bird song syntax: learned intraspecific variation is meaningful. Proc Natl Acad Sci U S A 85(10):3657–3660PubMedCentralCrossRefPubMedGoogle Scholar
  3. Balaban E (1988b) Cultural and genetic variation in swamp sparrows (Melospiza georgiana): II. Behavioral salience of geographic song variants. Behaviour 105:292–322CrossRefGoogle Scholar
  4. Ballentine B, Badyaev A, Hill GE (2003) Changes in song complexity correspond to periods of female fertility in blue grosbeaks (Guiraca caerulea). Ethology 109(1):55–66. doi: 10.1046/j.1439-0310.2003.00852.x CrossRefGoogle Scholar
  5. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates Inc, SunderlandGoogle Scholar
  6. Briefer EF, Rybak F, Aubin T (2013) Does true syntax or simple auditory object support the role of skylark song dialect? Anim Behav 86(6):1131–1137. doi: 10.1016/j.anbehav.2013.09.019 CrossRefGoogle Scholar
  7. Brindley EL (1991) Response of European robins to playback of song: neighbour recognition and overlapping. Anim Behav 41(3):503–512. doi: 10.1016/S0003-3472(05)80853-X CrossRefGoogle Scholar
  8. Carpenter CC, Badham JA, Kimble B (1970) Behavior patterns of three species of Amphibolurus (Agamidae). Copeia 1970(3):497–505CrossRefGoogle Scholar
  9. Carpenter CC, Ferguson GW (1977) Variation and evolution of stereotyped behavior in reptiles. In: Gans C, Tinkle DW (eds) Biology of the Reptilia. Academic, New York, pp 335–554Google Scholar
  10. Clark DL, Uetz GW (1993) Signal efficacy and the evolution of male dimorphism in the jumping spider, Maevia inclemens. Proc Natl Acad Sci U S A 90(24):11954–11957PubMedCentralCrossRefPubMedGoogle Scholar
  11. Clucas B, Freeberg T, Lucas J (2004) Chick-a-dee call syntax, social context, and season affect vocal responses of Carolina chickadees (Poecile carolinensis). Behav Ecol Sociobiol 57(2):187–196. doi: 10.1007/s00265-004-0847-9 CrossRefGoogle Scholar
  12. Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:125–153CrossRefGoogle Scholar
  13. Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc Lond Ser B Biol Sci 340(1292):215–225. doi: 10.1098/rstb.1993.0060 CrossRefGoogle Scholar
  14. Gatesy SM, Middleton KM, Jenkins FA Jr, Shubin NH (1999) Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. Nature 399(6732):141–144CrossRefGoogle Scholar
  15. Hailman JP (1986) Combinatorial animal communication with computable syntax: chick-a-dee calling qualifies as ‘language’ by structural linguistics. Anim Behav 34:1899–1902CrossRefGoogle Scholar
  16. Hailman JP, Ficken MS, Ficken RW (1985) The ‘chick-a-dee’ calls of Parus atricapillus: a recombinant system of animal communication compared with written English. Semiotica 56:191–224CrossRefGoogle Scholar
  17. Hailman JP, Ficken MS, Ficken RW (1987) Constraints on the structure of combinatorial “chick-a-dee” calls. Ethology 75(1):62–80. doi: 10.1111/j.1439-0310.1987.tb00642.x CrossRefGoogle Scholar
  18. Harlow PS, Taylor JE (2000) Reproductive ecology of the jacky dragon (Amphibolurus muricatus): an agamid lizard with temperature-dependent sex determination. Austral Ecol 25(6):640–652. doi: 10.1111/j.1442-9993.2000.tb00070.x CrossRefGoogle Scholar
  19. Holland J, Dabelsteen T, Paris AL (2000) Coding in the song of the wren: importance of rhythmicity, syntax and element structure. Anim Behav 60(4):463–470. doi: 10.1006/anbe.2000.1529 CrossRefPubMedGoogle Scholar
  20. Jenssen TA (1970) Female response to filmed displays of Anolis nebulosus (Sauria, Iguanidae). Anim Behav 18(0):640–647. doi: 10.1016/0003-3472(70)90007-2 CrossRefGoogle Scholar
  21. Jenssen TA (1977) Evolution of anoline lizard display behavior. Am Zool 17(1):203–215. doi: 10.1093/icb/17.1.203 CrossRefGoogle Scholar
  22. Kreutzer M, Bremond J-C (1989) The additive effects of syntax and the form of syllables on species recognition in the wren (Troglodytes troglodytes). Can J Zool 64:1241–1244CrossRefGoogle Scholar
  23. Leal M, Rodríguez-Robles JA (1997) Signalling displays during predator–prey interactions in a Puerto Rican anole, Anolis cristatellus. Anim Behav 54(5):1147–1154. doi: 10.1006/anbe.1997.0572 CrossRefPubMedGoogle Scholar
  24. Leonardo A, Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399(6735):466–470CrossRefPubMedGoogle Scholar
  25. Marler P (1977) The structure of animal communication sounds. In: Bullock TH (ed) Recognition of complex acoustic signals. Springer, Berlin, pp 18–35Google Scholar
  26. Marler P, Peters S (1988) The role of song phonology and syntax in vocal learning preferences in the song sparrow, Melospiza melodia. Ethology 77(2):125–149. doi: 10.1111/j.1439-0310.1988.tb00198.x CrossRefGoogle Scholar
  27. Martins E, Ord TJ, Davenport SW (2005) Combining motions into complex displays: playbacks with a robotic lizard. Behav Ecol Sociobiol 58(4):351–360. doi: 10.1007/s00265-005-0954-2 CrossRefGoogle Scholar
  28. Martins EP, Lamont J (1998) Estimating ancestral states of a communicative display: a comparative study of Cyclura rock iguanas. Anim Behav 55(6):1685–1706. doi: 10.1006/anbe.1997.0722 CrossRefPubMedGoogle Scholar
  29. Nelson DA, Marler P (1990) The perception of birdsong and an ecological concept of signal space. In: Stebbins WC, Berkley MA (eds) Comparative perception—volume II: complex signals. John Wiley & Sons, Inc, New York, pp 443–478Google Scholar
  30. Nicholson KE, Harmon LJ, Losos JB (2007) Evolution of Anolis lizard dewlap diversity. PLoS ONE 2(3):e274. doi: 10.1371/journal.pone.0000274 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Nowak MA, Plotkin JB, Jansen VAA (2000) The evolution of syntactic communication. Nature 404(6777):495–498CrossRefPubMedGoogle Scholar
  32. Nowicki S, Searcy WA, Hughes M, Podos J (2001) The evolution of bird song: male and female response to song innovation in swamp sparrows. Anim Behav 62(6):1189–1195. doi: 10.1006/anbe.2001.1854 CrossRefGoogle Scholar
  33. Okanoya K, Tsumaki S, Honda E (2000) Perception of temporal properties in self-generated songs by Bengalese finches (Lonchura striata var. domestica). J Comp Psychol 114(3):239–245CrossRefPubMedGoogle Scholar
  34. Okanoya K, Yamaguchi A (1997) Adult bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. J Neurobiol 33(4):343–356. doi: 10.1002/(SICI)1097-4695(199710)33:4 CrossRefPubMedGoogle Scholar
  35. Ord TJ, Evans CS (2002) Interactive video playback and opponent assessment in lizards. Behav Process 59(2):55–65. doi: 10.1016/S0376-6357(02)00045-1 CrossRefGoogle Scholar
  36. Ord TJ, Martins EP (2006) Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Anim Behav 71(6):1411–1429. doi: 10.1016/j.anbehav.2005.12.003 CrossRefGoogle Scholar
  37. Ord TJ, Stamps JA (2008) Alert signals enhance animal communication in “noisy” environments. Proc Natl Acad Sci U S A 105(48):18830–18835. doi: 10.1073/pnas.0807657105 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Päckert M, Martens J, Kosuch J, Nazarenko AA, Veith M (2003) Phylogenetic signal in the song of crests and kinglets (Aves: Regulus). Evolution 57(3):616–629. doi: 10.1111/j.0014-3820.2003.tb01553.x CrossRefPubMedGoogle Scholar
  39. Peters RA, Evans CS (2003) Introductory tail-flick of the jacky dragon visual display: signal efficacy depends upon duration. J Exp Biol 206(23):4293–4307. doi: 10.1242/jeb.00664 CrossRefPubMedGoogle Scholar
  40. Peters RA, Hemmi JM, Zeil J (2007) Signaling against the wind: modifying motion-signal structure in response to increased noise. Curr Biol 17(14):1231–1234. doi: 10.1016/j.cub.2007.06.035 CrossRefPubMedGoogle Scholar
  41. Peters RA, Ord TJ (2003) Display response of the jacky Dragon, Amphibolurus muricatus (Lacertilia: Agamidae), to intruders: a semi-Markovian process. Austral Ecol 28(5):499–506. doi: 10.1046/j.1442-9993.2003.01306.x CrossRefGoogle Scholar
  42. Podos J, Nowicki S, Peters S (1999) Permissiveness in the learning and development of song syntax in swamp sparrows. Anim Behav 58(1):93–103. doi: 10.1006/anbe.1999.1140 CrossRefPubMedGoogle Scholar
  43. Pytte C (1997) Song organization of house finches at the edge of an expanding range. Condor 58:93–103Google Scholar
  44. Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58(5):921–931. doi: 10.1006/anbe.1999.1242 CrossRefPubMedGoogle Scholar
  45. Rusch KM, Pytte CL, Ficken MS (1996) Organization of agonistic vocalizations in black-chinned hummingbirds. Condor 98:557–566CrossRefGoogle Scholar
  46. Ryan MJ, Kime NM (2003) Selection on long-distance acoustic signals. In: Popper AN, Fay RR (eds) Simmons AM. Acoustic Communication Springer, New York, pp 225–273Google Scholar
  47. Smith WJ (1977) The behavior of communicating: an ethological approach. Harvard University Press, CambridgeGoogle Scholar
  48. Soha JA, Marler P (2001) Vocal syntax development in the white-crowned sparrow (Zonotrichia leucophyrus). J Comp Psychol 115:172–180CrossRefPubMedGoogle Scholar
  49. Sung H-C, Miller EH, Flemming SP (2005) Breeding vocalizations of the piping plover (Charadrius melodus): structure, diversity, and repertoire organization. Can J Zool 83(4):579–595. doi: 10.1139/z05-041 CrossRefGoogle Scholar
  50. Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn & Bacon, BostonGoogle Scholar
  51. Templeton CN, Greene E, Davis K (2005) Allometry of alarm calls: black-capped chickadees encode information about predator size. Science 308(5730):1934–1937. doi: 10.1126/science.1108841 CrossRefPubMedGoogle Scholar
  52. Van Dyk DA, Evans CS (2007) Familiar–unfamiliar discrimination based on visual cues in the jacky dragon, Amphibolurus muricatus. Anim Behav 74(1):33–44. doi: 10.1016/j.anbehav.2006.06.018 CrossRefGoogle Scholar
  53. Van Dyk DA, Evans CS (2008) Opponent assessment in lizards: examining the effect of aggressive and submissive signals. Behav Ecol 19(4):895–901. doi: 10.1093/beheco/arn052 CrossRefGoogle Scholar
  54. Warner DA, Shine R (2008) The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451(7178):566–568CrossRefPubMedGoogle Scholar
  55. Wierzbicka A (1996) Semantics: primes and universals. Oxford University Press, New YorkGoogle Scholar
  56. Woo KL (2007) Computer-generated animal model stimuli. Journal of Visualized Experiments 6:http://www.jove.com/Details.htm?ID=243&VID235
  57. Woo KL, Burke D, Peters RA (2009) Motion sensitivity of the jacky dragon, Amphibolurus muricatus: random-dot kinematograms reveal the importance of motion noise for signal detection. Anim Behav 77(2):307–315. doi: 10.1016/j.anbehav.2008.10.011 CrossRefGoogle Scholar
  58. Woo KL, Rieucau G (2008) Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences. Behav Process 78(3):455–463. doi: 10.1016/j.beproc.2008.03.003 CrossRefGoogle Scholar
  59. Woo KL, Rieucau G (2012) Aggressive signal design in the jacky dragon (Amphibolurus muricatus): display duration affects efficiency. Ethology 118(2):157–168. doi: 10.1111/j.1439-0310.2011.01993.x CrossRefGoogle Scholar
  60. Woo KL, Rieucau G (2013) Efficiency of aggressive and submissive visual displays against environmental motion noise in jacky dragon (Amphibolurus muricatus). Ethol Ecol Evol 25(1):82–94. doi: 10.1080/03949370.2012.711370 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ISPA 2014

Authors and Affiliations

  1. 1.SUNY Empire State CollegeMetropolitan CenterNew YorkUSA
  2. 2.Institute of Marine ResearchBergenNorway

Personalised recommendations