acta ethologica

, Volume 15, Issue 2, pp 221–227 | Cite as

Activity rate of the seahorse Hippocampus reidi Ginsburg, 1933 (Syngnathidae)

  • Natalie Villar Freret-MeurerEmail author
  • José Vanderli Andreata
  • Maria Alice S. Alves
Short Communication


This study aimed to compare activity levels of male and female Hippocampus reidi and to relate the level of activity of the males to their height and brood pouch circumference. Females appeared to be highly active, while pregnant males were less active and non-pregnant males presented more balance in time investment between active and inactive behavior. There was a positive correlation between height, brood pouch circumference, and inactive behavior.


Sedentary behavior Seahorse Brood pouch Rocky reef 



While writing this paper, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior provided a Ph.D. fellowship to N.V.F.M, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and also FAPERJ provided a research grant to M.A.S.A. (processes 308792/2009-2 and 26/102.868/2008, respectively).


  1. Alcala AC, Russ GR (1990) A direct test of the effects of protective management on abundance and yield of tropical marine resources. J Cons Perm Int Explor Mer 46:40–47Google Scholar
  2. Andrew NL, Mapstone BD (1987) Sampling and description of spatial pattern in marine ecology. Oceanogr Mar Biol Annu Rev 25:39–90Google Scholar
  3. Bardach JE (1958) On the movement of certain Bermuda reef fishes. Ecolog 39:139–146CrossRefGoogle Scholar
  4. Bell EM, Lockyear JF, Mcpherson ADM, Vincent ACJ (2003) First field studies of an endangered south African seahorse Hippocampus capensis. Environ Biol Fish 67:35–46CrossRefGoogle Scholar
  5. Berglund A, Rosenqvist G, Svensson I (1986) Reversed sex roles and parental energy investment in zygotes of two pipefish (Syngnathidae) species. Mar Ecol Prog Ser 29:209–215CrossRefGoogle Scholar
  6. Blake RW (1976) On seahorse locomotion. J Mar Biol Ass 56:939–949CrossRefGoogle Scholar
  7. Blake RW (1980) Undulatory median fin propulsion of two teleosts with different modes of life. Can J Zool 58:2116–2119CrossRefGoogle Scholar
  8. Boisseau J (1967) Recherche sur le controle hormonal de l’incubation chez l’Hippocampe. Rev Eur Endocr 4:197–234Google Scholar
  9. Cameron GN, Spencer SR (1985) Assessment of space-use patterns in the hispid cotton rat (Sigmodon hispidus). Oecol 68:133–139CrossRefGoogle Scholar
  10. Carcupino M, Baldacci A, Mazzini M, Franzoi P (2002) Functional significance of the male brood pouch in the reproductive strategies of pipefishes and seahorses: a morphological and ultrastructural comparative study on three anatomically different pouches. J Fish Biol 61:1465–1480CrossRefGoogle Scholar
  11. Castro ALC, Lino LALM, Xavier JHA, Cordeiro CAMM, Rosa IL (2008) Assessing diet composition of seahorses in the wild using a non destructive method: Hippocampus reidi (Teleostei: Syngnathidae) as a study-case. Neotrop Ichthyol 6(4):637–644CrossRefGoogle Scholar
  12. DeMartini EE (1993) Modeling the potential of fishery reserves for managing Pacific coral reef fishes. Fish Bull 91(3):414–427Google Scholar
  13. Dias TLP, Rosa IL (2003) Habitat preferences of a seahorse species, Hippocampus reidi (Teleostei: Syngnathidae) in Brazil. Aqua J Ichthyol Aquat Biol 6(4):165–176Google Scholar
  14. English SA, Wilkinson C, Baker VJ (1994) Survey manual for tropical marine resources. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  15. Felício AKC, Rosa IL, Souto A, Freitas RHA (2006) Feeding behavior of the longsnout seahorse Hippocampus reidi Ginsburg, 1933. J Ethol 24:219–225CrossRefGoogle Scholar
  16. Foster SJ, Vincent ACJ (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61CrossRefGoogle Scholar
  17. Freret-Meurer NV, Andreata JV (2008) Field studies of a Brazilian seahorse population, Hippocampus reidi Ginsburg, 1933. Braz Arch Biol Technol 51(4):743–751CrossRefGoogle Scholar
  18. Friday N, Smith TD (2000) Measurement of photographic quality and individual distinctiveness for the photographic identification of humpback whales, Megaptera novaeangliae. Mar Mam Sci 16(2):355–374CrossRefGoogle Scholar
  19. Gervasi V, Brunberg S, Swenson JE (2006) An individual-based method to measure animal activity levels: a test on brown bears. Wildl Soc Bull 34(5):1314–1319CrossRefGoogle Scholar
  20. Hulbert SH (1984) Pseudoreplication and the design ecological field experiments. Ecol Monogr 54:187–211CrossRefGoogle Scholar
  21. Hutt SJ, Hutt C (1978) Direct observation and measurement of behavior. Thomas, SpringfieldGoogle Scholar
  22. Kvarnemo C, Moore GI, Jones AG, Nelson WS, Avise JC (2000) Monogamous pair bonds and mate switching in the western Australian seahorse Hippocampus subelongatus. J Evol Biol 13:882–888CrossRefGoogle Scholar
  23. Kvarnemo C, Mobley KB, Partridge C, Jones AG, Ahnesjö I (2011) Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish Syngnathus typhle. J Fish Biol 78(6):1725–1737PubMedCrossRefGoogle Scholar
  24. Linton JR, Soloff BR (1964) The physiology of the brood pouch of the male seahorse Hippocampus erectus. Bull Mar Sci Gulf Carib 14:45–61Google Scholar
  25. Lourie SA (2003) Measuring seahorses. Tech Rep Ser 4:15pGoogle Scholar
  26. Lourie SA, Randall JE (2003) A new pygmy seahorse, Hippocampus denise (Teleostei: Syngnathidae), from the Indo-Pacific. Zool Stud 42(2):284–291Google Scholar
  27. Lourie SA, Vincent ACJ, Hall HJ (1999) Seahorses: an identification guide to the world`s species and their conservation. Project Seahorse, LondonGoogle Scholar
  28. Mace GM, Harvey PH, Clutton-Brock TH (1983) Vertebrates home-range size and energetic requirements. In: Swingland IR, Greenwood PJ (eds) The ecology of animal movement. Clarendon, Oxford, pp 38–53Google Scholar
  29. Masonjones HD (2001) The effect of social context and reproductive status on the metabolic rates of dwarf seahorses (Hippocampus zosterae). Comp Biochem Physiol A 129:541–555CrossRefGoogle Scholar
  30. Menegatti JV, Descovi DL, Floeter SR (2003) Interações agonísticas e forrageamento do peixe-donzela Stegastes fuscus (Perciformes: Pomacentridae). Natur Online 1(2):45–50Google Scholar
  31. Moreau M, Vincent ACJ (2004) Social structure and space use in a wild population of the Australian short-headed seahorse Hippocampus breviceps Peters, 1869. Mar Freshw Res 55:231–239CrossRefGoogle Scholar
  32. Partridge C, Shardo J, Boettcher A (2007) Osmoregulatory role of the brood pouch in the euryhaline Gulf pipefish, Syngnathus scovelli. Comp Biochem Physiol A Mol Integr Physiol 147:556–561PubMedCrossRefGoogle Scholar
  33. Perante NC, Pajaro MG, Meeuwig JJ, Vincent ACJ (2002) Biology of a seahorse species, Hippocampus comes in the central Philippines. J Fish Biol 60:821–837CrossRefGoogle Scholar
  34. Pérès JM (1961) Océanographie Biologique et biologie marine. Presses Universtaires de France, ParisGoogle Scholar
  35. Polachek T (1990) Year round closed areas as a management tool. Nat Res Model 4(3):327–354Google Scholar
  36. Randall JE (1961) Tagging reef fishes in Virginia Islands. Proc Gulf Carib Fish Inst 14:201–241Google Scholar
  37. Ripley JL (2009) Osmoregulatory role of the paternal brood pouch for two Syngnathus species. Comp Biochem Physiol A Mol Integr Physiol 154:98–104PubMedCrossRefGoogle Scholar
  38. Ripley JL, Foran CM (2006) Differential parental nutrient allocation in two congeneric pipefish species (Syngnathidae: Syngnathus spp.). J Experim Biol 209:1112–1121CrossRefGoogle Scholar
  39. Ripley JL, Foran CM (2009) Direct evidence for embryonic uptake of paternally-derived nutrients in two pipefishes (Syngnathidae: Syngnathus spp.). J Comp Physiol B 179:325–333PubMedCrossRefGoogle Scholar
  40. Russ GR, Alcala AC (1996) Do marine reserves export adult fish biomass? Evidence from Apo Island, central Philippines. Mar Ecol Prog Ser 132:1–9CrossRefGoogle Scholar
  41. Sagebakken G, Ahnesjö I, Mobley KB, Goncalves IB, Kvarnemo C (2010) Brooding fathers, not siblings, take up nutrients from embryos. Proc Biol Sci 277:971–977PubMedCrossRefGoogle Scholar
  42. Sale PF (1978) Reef fish and other vertebrates: a comparison of social structures. In: Reese ES, Ligher FJ (eds) Contrasts in behavior. Wiley, New YorkGoogle Scholar
  43. Sale P (1991) The ecology of fishes on coral reefs. Academic, San DiegoGoogle Scholar
  44. Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57(3):289–304CrossRefGoogle Scholar
  45. Schoener TW, Schoener A (1982) Intraspecific variation in home range size in some Anolis lizard. Ecol 63:809–823CrossRefGoogle Scholar
  46. Strölting KN, Wilson AB (2007) Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays 29:884–896CrossRefGoogle Scholar
  47. Svensson I (1988) Reproductive costs in two sex-role reversed pipefish species (Syngnathidae). J Anim Ecol 57:929–942CrossRefGoogle Scholar
  48. Van Wassenbergh S, Roos G, Ferry L (2011) An adaptive explanation for the horse-like shape of seahorses. Nat Commun 2:164PubMedCrossRefGoogle Scholar
  49. Vincent ACJ (1990) Reproductive ecology of seahorses. Dissertation, Cambridge UniversityGoogle Scholar
  50. Vincent ACJ (1996) The international trade in seahorses. TRAFFIC International, CambridgeGoogle Scholar
  51. Vincent ACJ, Sadler LM (1995) Faithful pair bonds in wild seahorses, Hippocampus whitei. Anim Behav 50:1557–1569CrossRefGoogle Scholar
  52. Vincent ACJ, Evans KL, Marsden AD (2005) Home range behaviour of the monogamous Australian seahorse, Hippocampus whitei. Environ Biol Fish 72:1–12CrossRefGoogle Scholar
  53. Wilson AB, Ahnesjö I, Vincent AC, Meyer A (2003) The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (family Syngnathidae). Evol 57:1374–1386Google Scholar
  54. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag and ISPA 2012

Authors and Affiliations

  • Natalie Villar Freret-Meurer
    • 1
    • 2
    • 3
    Email author
  • José Vanderli Andreata
    • 2
  • Maria Alice S. Alves
    • 3
  1. 1.Programa de Pós-Graduação em Biologia, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  2. 2.Laboratório de Ictiologia, Instituto de Ciências Biológicas e AmbientaisUniversidade Santa ÚrsulaRio de JaneiroBrazil
  3. 3.Departamento de Ecologia, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations