Skip to main content
Log in

Failure of captive-born greater rheas (Rhea americana, Rheidae, Aves) to discriminate between predator and nonpredator models

  • Original Paper
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

The capacity to recognize and respond to predators can be lost by captive animals. Habituation to humans caused by the captive environment can be transferred to other stimuli, such as predators, a situation that conservation biologists wish to avoid. Greater rheas are threatened South American birds, for which there are plans for reintroduction programs in Brazil. The goal of this study was to evaluate the behavioral responses of captive-born greater rheas to different models of predators and nonpredators. Seventeen captive-born greater rheas, divided into four groups, from the Belo Horizonte Zoo, Brazil were studied. Three predator and three nonpredator models were presented to the birds and their behavioral responses recorded. Predators versus nonpredator models and the behavior of rheas in three experimental phases (baseline, models, and postmodels) were analyzed. Captive-born greater rheas modified their behaviors in the presence of both predator/nonpredator models, increasing alert and wary behaviors (alert, observing, and pacing behaviors: P < 0.01), showing some degree of antipredator behavior persistence, but they were unable to discriminate between predator and nonpredator models (all behaviors: P > 0.05). In conclusion, antipredator training should be implemented to develop the expression of this behavior before reintroductions are attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JL, Camelio KW, Orique MJ, Blumstein DT (2006) Does information of predators influence general wariness? Behav Ecol Sociobiol 60:742–747. doi:10.1007/s00265-006-0218-9

    Article  Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behav 49:227–267

    Article  CAS  Google Scholar 

  • Alvarez D, Nicieza AG (2003) Predator avoidance behaviour in wild and hatchery-reared brown trout: the role of experience and domestication. J Fish Biol 63:1565–1577. doi:10.1046/j.1095-8649.2003.00267.x

    Article  Google Scholar 

  • Azevedo CS, Lima MFF, Silva VCA, Young RJ, Rodrigues M (in press) Visitor influence on the behaviour of captive greater rhea (Rhea americana, Rheidae, Aves). Journal of Animal Welfare Science

  • Blumstein DT, Daniel JC, Griffin AS, Evans CS (2000) Insular tammar wallabies (Macropus eugenii) respond to visual but not acoustic cues from predators. Behav Ecol 11:528–535. doi:10.1093/beheco/11.5.528

    Article  Google Scholar 

  • Blumstein DT, Bitton A, Da Veiga J (2006) How does the presence of predators influence the persistence of antipredator behavior? J Theor Biol 239:460–468. doi:10.1016/j.jtbi.2005.08.011

    Article  PubMed  Google Scholar 

  • Brandt LFS, Neto AS (1999) Introdução e monitoramento de Rhea americana na EPDA Galheiro (Perdizes, MG). CEMIG, Belo Horizonte

    Google Scholar 

  • Carlstead K, Shepherdson DJ (2000) Alleviating stress in zoo animals with environmental enrichment. In: Moberg GP, Mench JA (eds) The biology of animal stress. CABI, New York, pp 337–354

    Google Scholar 

  • Carvalho LN, Del-Claro K (2004) Effects of predation pressure on the feeding behaviour of the serpa tetra Hyphessobrycon eques (Ostariophysi, Characidae). Acta Ethol 7:89–93

    Article  Google Scholar 

  • Codenotti TL, Beninca D, Alvarez F (1995) Etograma y relacion de la conducta con el habitat y con la edad en el ñandú. Doñana, Acta Vertebrata 22:65–86

    Google Scholar 

  • Coss RG (1999) Effects of relaxed natural selection on the evolution of behavior. In: Foster SA, Endler JA (eds) Geographic variation in behavior: perspectives on evolutionary mechanisms. Oxford University Press, Oxford, pp 180–208

    Google Scholar 

  • Coss RG, Goldthwaite RO (1995) The persistence of old designs for perception. Persp Ethol 11:83–148

    Google Scholar 

  • Curio E (1993) Proximate and developmental aspects of antipredator behavior. Adv Study Behav 22:135–238

    Article  Google Scholar 

  • Cusato MB, Morrow ME (2003) Fear in the captive-bred Attwater’s prairie chicken as an indicator of postrelease survivor. Int J Comp Psych 16:95–110

    Google Scholar 

  • Dani S (1993) A Ema Rhea americana: biologia, manejo e conservação. Fundação Acangaú, Belo Horizonte

    Google Scholar 

  • Davies SJJF (2002) Ratites and tinamous. Oxford University Press, Oxford

    Google Scholar 

  • Del Hoyo J, Elliot A, Sargatal JA (1992) A handbook of the birds of the world, volume1. Lynx Editions, Barcelona

    Google Scholar 

  • Ferrari MCO (2009) Threat-sensitive learning and generalization of predator recognition by aquatic vertebrates. Ph.D. thesis, University of Saskatchewan

  • Griffin AS, Evans CS (2003) Social learning of antipredator behaviour in a marsupial. Anim Behav 66:485–492. doi:10.1006/anbe.2003.2207

    Article  Google Scholar 

  • Griffin AS, Blumstein DT, Evans CS (2000) Training captive-bred translocated animals to avoid predators. Conserv Biol 14:1317–1326. doi:10.1046/j.1523-1739.2000.99326.x

    Article  Google Scholar 

  • Griffin AS, Evans CS, Blumstein DT (2001) Learning specificity in acquired predator recognition. Anim Behav 62:577–589. doi:10.1046/j.1523-1739.2000.99326.x

    Article  Google Scholar 

  • Griffin AS, Evans CS, Blumstein DT (2002) Selective learning in a marsupial. Ethol 108:1103–1114. doi:10.1046/j.1439-0310.2002.00840.x

    Article  Google Scholar 

  • Hakasson J, Jensen P (2008) A longitudinal study of antipredator behavior in four successive generations of two population of captive red junglefowl. Appl Anim Behav Sci 114:409–418. doi:10.1016/j.applanim.2008.04.003

    Article  Google Scholar 

  • Helfman GS (1989) Threat-sensitive avoidance in damselfish–trumpetfish interactions. Behav Ecol Sociobiol 24:47–58. doi:10.1007/BF00300117

    Article  Google Scholar 

  • Johnsson JI, Petersson E, Jönsson E, Björnsson BT, Järvi T (1996) Domestication and growth hormones alter antipredator behaviour and growth patterns in juvenile brown trout, Salmo trutta. Can J Fish Aquat Sci 53:1546–1554. doi:10.1139/f96-090

    Article  CAS  Google Scholar 

  • Johnsson JI, Hojesjo J, Fleming IA (2001) Behavioural and heart rate responses to predation risk in wild and domesticated Atlantic salmon. Can J Fish Aquat Sci 58:788–794. doi:10.1139/cjfas-58-4-788

    Article  Google Scholar 

  • Jones RB, Waddington D (1992) Modification of fear in domestic chicks, Gallus gallus domesticus, via regular handling and early environmental enrichment. Anim Behav 43:1021–1033. doi:10.1016/S0003-3472(06)80015-1

    Article  Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48:25–34

    Article  Google Scholar 

  • Machado ABM, Fonseca GAB, Machado RB, Aguiar LMS, Lins LV (1998) Livro Vermelho das Espécies Ameaçadas de Extinção da Fauna de Minas Gerais. Fundação Biodiversitas, Belo Horizonte

    Google Scholar 

  • Martin P, Bateson P (2007) Measuring behaviour: an introductory guide, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • McPhee ME (2003) Generations in captivity increases behavioral variance: considerations for captive breeding and reintroduction programs. Biol Conserv 115:71–77. doi:10.1016/S0006-3207(03)00095-8

    Article  Google Scholar 

  • Oliveira PS, Marquis RJ (2002) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York

    Google Scholar 

  • Shalter MD (1984) Predator–prey behavior and habituation. In: Harman VS, Petrinovich PL (eds) Habituation, sensitization, and behavior. Academic, New York, pp 349–391

    Google Scholar 

  • Stankowich T, Blumstein DT (2005) Fear in animals: a meta-analysis and review of risk assessment. P R Soc 272:2627–2634. doi:10.1098/rspb.2005.3251

    Article  Google Scholar 

  • Teixeira CP, Azevedo CS, Mendl M, Cipreste CF, Young RJ (2007) Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim Behav 73:1–13. doi:10.1016/j.anbehav.2006.06.002

    Article  Google Scholar 

  • Van Heezik Y, Seddon PJ, Maloney RF (1999) Helping reintroduced houbara avoid predation: effective anti-predator training and the predictive value of pre-release behaviour. Anim Conserv 2:155–163. doi:10.1111/j.1469-1795.1999.tb00061.x

    Article  Google Scholar 

  • Young RJ (2003) Environmental enrichment for captive animals. Blackwell, Oxford

    Book  Google Scholar 

  • Zaccaroni M, Ciuffreda M, Paganim M, Beani L (2007) Does an early aversive experience to humans modify antipredator behaviour in adult rock partridge? Ethol Eco Evol 19:193–200. doi:10.1080/08927014.2007.9522561

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

CSA thanks A. Faggioli and C.M. Coelho for the authorization to use BH Zoo’s facilities and birds. Special thanks to R. Pena and the other students (L and MF) for help with data collection. MR thanks the CNPq (Brazilian Research Agency) for research fellowship and a research grant (473428/2004-0), Fapemig (PPM CRA APQ-0434-5.03/07) and Fundação O Boticário de Proteção à Natureza for supporting the ‘Laboratório de Ornitologia’ of ‘Universidade Federal de Minas Gerais’. RJY is financially supported by FAPEMIG (“Pesquisador Mineiro”) and CNPq (“Bolsa de produtividade”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Schetini de Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schetini de Azevedo, C., Young, R.J. & Rodrigues, M. Failure of captive-born greater rheas (Rhea americana, Rheidae, Aves) to discriminate between predator and nonpredator models. acta ethol 15, 179–185 (2012). https://doi.org/10.1007/s10211-012-0124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-012-0124-2

Keywords

Navigation