Skip to main content
Log in

Influence of predation risk and plant structure on vigilance and intermittent locomotion in Microcavia australis (Rodentia, Caviidae)

  • Original Paper
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze and compare vigilance behavior and intermittent locomotion at two sites (El Leoncito and Ñacuñán, Argentina) that differ in predation risk, plant structure, and plant resource availability. Subjects were lesser cavies (Microcavia australis), a social species that is semi-fossorial, diurnal, and native to South America. Continuous focal sampling was conducted during the day, at times of food shortage, food abundance, and reproduction from 2003 to 2005. The proportion of time spent vigilance was significantly higher at Ñacuñán, where vigilance peaked at midday and reached a minimum in the evening. This midday peak of vigilance at Ñacuñán was associated with a midday peak of danger from raptors as indicated by a raptor activity peak at that time. In contrast, both vigilance and predator activity at El Leoncito were constant through the day. Records of intermittent locomotion and number and duration of pauses in locomotion were significantly higher at El Leoncito, a difference that may have been due to the need for greater vigilance while moving across areas of less protective cover at this site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Blumstein DT (1998) Quantifying predation risk for refuging animals: a case study with golden marmots. Ethology 104:501–516

    Article  Google Scholar 

  • Bracco A, Contreras VH. 2000. Caracterización Geológica. In: Relevamiento de los recursos Naturales de la Reserva Estricta El Leoncito. Instituto y Museo de Cs. Naturales-UNSJ: Secciones de Geología y Biología, pp 3–11

  • Branch LC (1993) Seasonal patterns of activity and body mass in the plains vizcacha, Lagostomus maximus (family Chinchillidae). Can J Zool 71:1041–1045

    Article  Google Scholar 

  • Brillhart DB, Kaufman DW (1991) Influence of illumination and surface structure on space use by prairie mice (Peromyscus maniculatus bairdii). J Mammal 72:764–768

    Article  Google Scholar 

  • Brownsmith CB (1977) Foraging rates of starlings in two habitats. Condor 79:386–387

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Buenos Aires: ACME

  • Canevari M, Fernández Balboa C (2003) 100 Mamíferos argentinos. Buenos Aires: Editorial Albatros

  • Contreras JR, Roig VG (1979) Observaciones sobre la organización social, ecología y estructura de los habitáculos de Microcavia australis en Ñacuñán, Provincia de Mendoza. Ecosur 10:191–199

    Google Scholar 

  • Cassini MM (1989) El comportamiento alimentario de los Cavias (Mammalia, Rodentia) y la “Teorı´a de forrajeo óptimo”. Doctoral Thesis in Biological Sciences, UBA, Argentina

    Google Scholar 

  • Curio E (1976) The ethology of predation. Springer-Verlag, Berlin

    Google Scholar 

  • Dimond S, Lazarus J (1974) The problem of vigilance in animal life. Brain Behav Evol 9:60–79

    Article  PubMed  CAS  Google Scholar 

  • Djawdan M, Garland T (1988) Maximal running speeds of bipedal and quadrupedal rodents. J Mammal 69:765–772

    Article  Google Scholar 

  • Dukas R (1998) Constraints on information processing and their affects on behavior. In: Dukas R. Cognitive ecology. Chicago: The University of Chicago Press. pp 89–127

  • Dyer FC (1998) Cognitive ecology of navigation. In: Dukas R (ed) Cognitive ecology. The University of Chicago Press, Chicago, pp 201–260

    Google Scholar 

  • Ebensperger LA (2001) A review of the evolutionary causes of rodent group-living. Acta Theriol 46:155–144

    Article  Google Scholar 

  • Ebensperger LA, Hurtado MJ (2005) On the relationship between herbaceous cover and vigilance activity of degus (Octodon degus). Ethology 111:593–608

    Article  Google Scholar 

  • Ebensperger LA, Taraborelli P, Giannoni SM, Hurtado MJ, León C, Bozinovic F (2006) Nest and space use in a highland population of the lesser cavy, Microcavia australis: implications for its social organization. J Mammal 87:834–840

    Article  Google Scholar 

  • Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64:13–33

    Article  PubMed  CAS  Google Scholar 

  • Estrella H, Boshoven J, Tognelli M (2001) Características del clima regional y de la reserva de Ñacuñán. In: Claver S, Roig-Juñent S. El Desierto del Monte: La Reserva de Biosfera de Ñacuñán. IADIZA- UNESCO-MaB. pp 25–34

  • Hoogland JL (1981) The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae: Cynomys leucurus and C. ludovicianus). Ecology 62:252–272

    Article  Google Scholar 

  • Hoogland JL (1995) The black-tailed prairie dog: social life of a burrowing mammal. The University of Chicago Press, Chicago and London

    Google Scholar 

  • Hughes JJ, Ward D (1993) Predation risk and distance to cover affect foraging behaviour in Namibi desert gerbils. Anim Behav 46:1243–1245

    Article  Google Scholar 

  • Kramer DL, McLaughlin RL (2001) The behavioral ecology of intermittent locomotion. Am Zool 41:137–153

    Article  Google Scholar 

  • Lehner PN (1996) Handbook of ethological methods, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Houérou HN (1999) Estudios e investigaciones Ecológicas de las Zonas Áridas y semiáridas de Argentina. Mendoza, IADIZA-CRICYT

  • Lima SL (1987) Vigilance while feeding and its relation to the risk of predation. J Theor Biol 124:303–316

    Article  Google Scholar 

  • MacAdam AG, Kramer DL (1998) Vigilance as a benefit of intermittent locomotion in small mammals. Anim Behav 55:109–117

    Article  Google Scholar 

  • Márquez J (1999) Las áreas protegidas de la Provincia de San Juan. Multequina 8:1–10

    Google Scholar 

  • Márquez J, Dalmasso AD (2003) Las comunidades vegetales de los ambientes húmedos del Parque Nacional El Leoncito, San Juan, Argentina. Multequina 12:55–67

    Google Scholar 

  • Márquez J, Pastrán G, Ortiz G (2000) Relevamiento de vegetación. In: Relevamiento de los recursos Naturales de la Reserva Estricta El Leoncito. Instituto y Museo de Cs. Naturales-UNSJ: Secciones de Geología y Biología. pp 12–26

  • Martin P, Bateson P (1993) Measuring behaviour. An introductory guide, 2nd edn. Cambridge Univ. Press, U. K, Cambridge

    Google Scholar 

  • Meserve PL, Gutiérrez JR, Jaksic FM (1993) Effects of vertebrate predation on caviomorph rodent, the degu (Octodon degus), in a semiarid thorn scrub community in Chile. Oecologia 94:153–158

    Article  Google Scholar 

  • Ojeda RA, Campos CM, Gonnet JM, Borghi CE, Roig V (1998) The MaB Reserve of Ñacuñán, Argentina: its role in understanding the Monte Desert biome. J Arid Environ 39:299–313

    Article  Google Scholar 

  • Olrog CC, Lucero MM (1986) Guía de los mamíferos argentinos. Ministerio de Cultura y Educación, Fundación Miguel Lillo, San Miguel de Tucumán, Argentina

  • Pearson OP (1995) Annotated keys for identifying small mammals living in or near Nahual Huapi National Park or Lanin National Park, Southern Argentina. Mastozzología Neotrop 2:1–148

    Google Scholar 

  • Pennisi E (2000) In nature, animals that stop and start win the race. Science 288:83–85

    Article  PubMed  CAS  Google Scholar 

  • Roig FA (1971) Flora y vegetación de la reserva forestal de Ñacuñán. Mendoza: IADIZA

  • Rood J (1967) Observaciones sobre la ecología y el comportamiento de los Caviinae de la Argentina (Mammalia, Rodentia). Zoología Platense 1:1–6

    Google Scholar 

  • Rood JP (1972) Ecological and behavioural comparisons of three genera of Argentine cavies. Anim Behav Monogr 5:1–83

    Google Scholar 

  • Schooley RL, Sharpe PB, Van Horne B (1996) Can shrub cover increase predation risk for a desert rodent? Cannadian J Zool 74:157–163

    Article  Google Scholar 

  • Sundell J, Ylönen H (2004) Behaviour and choice of refuge by voles under predation risk. Behav Ecol Sociobiol 56:263–269

    Article  Google Scholar 

  • Taraborelli P (2006) Factores que afectan en la sociabilidad de Microcavia australis (Rodentia, Caviidae). Doctoral Thesis in Biological Sciences, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina

  • Taraborelli P, Moreno P (2009) Comparison of composition of social groups, mating system and social behaviours of Microcavia australis between the different Monte. Mamm Biol 74:15–24

    Article  Google Scholar 

  • Taraborelli P, Moreno P, Srur AM, Sandobal AJ, Martinez MG, Giannoni S (2008) Different antipredator responses by Microcavia australis (Rodentia, Hystricognate, Caviidae) under predation risk. Behaviour 145:829–842

    Article  Google Scholar 

  • Taraborelli P, Corbalán V, Giannoni SM (2003a) Locomotion and escape modes in rodents of the Monte Desert (Argentina). Ethology 109:475–485

    Article  Google Scholar 

  • Taraborelli P, Dacar M, Giannoni SM (2003b) Effect of plant cover on seed removal by rodents in the Monte Desert (Mendoza, Argentina). Austral Ecology 28:651–657

    Article  Google Scholar 

  • Taylor RJ (1998) Territory size and location in animals with refuges: influence of predation risk. Evol Ecol 2:95–101

    Article  Google Scholar 

  • Thompson SD (1982) Microhabitat utilization and foraging behavior of bipedal and quadrupedal heteromyid rodents. Ethology 63:1313–1321

    Google Scholar 

  • Thompson SD (1985) Bipedal hopping and seed-dispersion selection by heteromyid rodents: the role of locomotion energetics. Ecology 66:220–229

    Article  Google Scholar 

  • Tognelli MF, Campos CM, Ojeda RA, Roig VG (1995) Is Microcavia australis (Rodentia: Caviidae) associated with a particular plant structure in the Monte desert of Argentina? Mammalia 59:327–333

    Article  Google Scholar 

  • Trouilloud W, Delisle A, Kramer DL (2004) Head raising during foraging and pausing during intermittent locomotion as components of antipredator vigilance in chipmunks. Anim Behav 67:789–797

    Article  Google Scholar 

  • Vásquez RA, Ebensperger L, Bozinovic F (2002) The influence of habitat on travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behav Ecol 13:182–187

    Article  Google Scholar 

  • Weinstein RB, Full RJ (1992) Intermittent exercise alters endurance in an eight-legged ectotherm. Am J Phys 262:R852–R859

    CAS  Google Scholar 

Download references

Acknowledgments

This study was partially financed by CONICET, PICT Nº 03281, and PIP 02884. The authors wish to express their thanks to M. C. González, N. Borruel, A.J. Sandobal, M. Martínez, and V. Bauni for their cooperation in the field. Thanks also to N. Horak for the English version of the manuscript and to Dr. R. Ojeda for his contributions in reviewing the manuscript and for the literature provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Taraborelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taraborelli, P., Moreno, P., Srur, A. et al. Influence of predation risk and plant structure on vigilance and intermittent locomotion in Microcavia australis (Rodentia, Caviidae). acta ethol 14, 27–33 (2011). https://doi.org/10.1007/s10211-010-0087-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-010-0087-0

Keywords

Navigation