acta ethologica

, Volume 10, Issue 2, pp 81–88 | Cite as

Sex recognition in surface- and cave-dwelling Atlantic molly females (Poecilia mexicana, Poeciliidae, Teleostei): influence of visual and non-visual cues

  • Martin Plath
  • Michael Tobler
Original Paper


Cave fishes need to rely on non-visual senses, such as the sense of smell or the lateral line to communicate in darkness. In the present study, we investigated sex identification by females of a cave-dwelling livebearing fish, Poecilia mexicana (cave molly), as well as its surface-dwelling relatives. Unlike many other cave fishes, cave mollies still possess functional eyes. Three different modes of presentation of the stimulus fish (a male and an equally sized female) were used: (i) the stimulus fish were presented behind wire-mesh in light, allowing the focal female to perceive multiple cues, (ii) the experiment was carried out under infrared conditions, such that only non-visual cues could be perceived and (iii) the stimulus fish were presented in light behind transparent Plexiglas, allowing for the use of visual cues only. Females of all populations examined preferred to associate with the stimulus female in at least one of the treatments, but only when visible light was provided, suggesting that far-range sex recognition is limited or even absent in the cave molly under naturally dark conditions.


Cave fish Lateral line Poeciliidae Sexual harassment Visual communication 



We are grateful to the people of Tapijulapa for their hospitality during our visits. The Mexican Government kindly issued permits to collect fish (Permiso de pesca de fomento numbers: 291002-613-1577 and DGOPA/5864/260704/-2408). Financial support came from the DFG to M. P. (PL 470/1-1), the German Ichthyological Association (to M. T. and M. P. ) as well as the Basler Foundation for Biological Research, the Janggen-Poehn-Foundation, the Roche Research Foundation, and the Wolfermann-Nägeli-Foundation (to M. T. ). We are indebted to J. Parzefall for introducing us to the biology of the cave molly.


  1. Agrillo C, Dadda M, Bisazza A (2006) Sexual harassment influences group choice in female mosquitofish. Ethology 112:592–598CrossRefGoogle Scholar
  2. Barr TC, Holsinger JR (1985) Speciation in cave faunas. Ann Rev Ecol Syst 16:313–337CrossRefGoogle Scholar
  3. Bisazza A, Marin G (1995) Sexual selection and sexual size dimorphism in the eastern mosquitofish Gambusia holbrooki (Pisces: Poeciliidae). Ethol Ecol Evol 7:169–183CrossRefGoogle Scholar
  4. Burt de Perera T (2004a) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295CrossRefGoogle Scholar
  5. Burt de Perera T (2004b) Fish can encode order in their spatial map. Proc R Soc Lond B 271:2131–2134CrossRefGoogle Scholar
  6. Constantz GD (1989) Reproductive biology of poeciliid fishes. In: Meffe G K, Snelson FF (eds ) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, New Jersey pp 33–50Google Scholar
  7. Crapon de Caprona MD, Ryan MJ (1990) Conspecific mate recognition in swordtails, Xiphophorus nigrensis and X. pygmaeus (Poeciliidae): olfactory and visual cues. Anim Behav 39:290–296CrossRefGoogle Scholar
  8. Culver DC (1982) Cave life — evolution and ecology. Harvard University Press, CambridgeGoogle Scholar
  9. Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves: The evolution of Gammarus minus. Harvard University Press, CambridgeGoogle Scholar
  10. Dadda M, Pilastro A, Bisazza A (2005) Male sexual harassment and female schooling behaviour in the eastern mosquitofish. Anim Behav 70:463–471CrossRefGoogle Scholar
  11. Fisher HS, Rosenthal GG (2006) Female swordtail fish use chemical cues to select well-fed mates. Anim Behav 72:721–725CrossRefGoogle Scholar
  12. Fisher HS, Wong BBM, Rosenthal GG (2006) Alteration of the chemical environment disrupts communication in a freshwater fish. Proc Roy Soc Lond B 273:1187–1193CrossRefGoogle Scholar
  13. Godin J-GJ (1995) Predation risk and alternative mating tactics in male Trinidadian guppies (Poecilia reticulata). Oecologia 103:224–229CrossRefGoogle Scholar
  14. Gordon MS, Rosen DE (1962) A cavernicolous form of the Poeciliid fish Poecilia sphenops from Tabasco, México. Copeia 1962:360–368CrossRefGoogle Scholar
  15. Griffiths SW (1996) Sex differences in the trade-off between feeding and mating in the guppy. J Fish Biol 48:891–898CrossRefGoogle Scholar
  16. Griffiths SW (1997) Schooling decisions in guppies (Poecilia reticulata) are based on familiarity rather than kin recognition by phenotype matching. Behav Ecol Sociobiol 45:437–443CrossRefGoogle Scholar
  17. Houde AE (1997) Sex, color, and mate choice in guppies. Princeton University Press, Princeton, New Jersey, USAGoogle Scholar
  18. Istenič L, Bulog B (1984) Some evidence for the ampullary organs in the European cave salamander Proteus anguinus (Urodela, Amphibia). Cell Tissue Res 253:393–402CrossRefGoogle Scholar
  19. Jeffery WR (2001) Cavefish as a model system in evolutionary and developmental biology. Develop Biol 231:1–12PubMedCrossRefGoogle Scholar
  20. Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196PubMedCrossRefGoogle Scholar
  21. Körner KE, Schlupp I, Plath M, Loew ER (2006) Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J Fish Biol 69:54–65CrossRefGoogle Scholar
  22. Kramer DL, McClure M (1982) Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Environ Biol Fish 7:47–55CrossRefGoogle Scholar
  23. Langecker TG (2000) The effect of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens H, Culver DC, Humphries WF Ecosystems of the world 30: Subterranean Ecosystems. Elsevier Science pp 135–157Google Scholar
  24. Langecker TG, Longley G (1993) Morphological adaptations of the Texas blind catfishes Trogloglanis pattersoni and Satan eurystomus (Siluriformes, Ictaluridae) to their underground environment. Copeia 1993:976–986CrossRefGoogle Scholar
  25. Liley NR (1966) Ethological isolating mechanisms in four sympatric species of poeciliid fishes. Behaviour 13:1–197Google Scholar
  26. Liley NR (1983) Hormones, pheromones, and reproductive behavior in fishes. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol 3. Academic Press, New York, pp 73–116Google Scholar
  27. Magurran AE (2001) Sexual conflict and evolution in Trinidadian guppies. Genetica 112/113:463–474CrossRefGoogle Scholar
  28. Magurran AE, Seghers BH (1994a) A cost of sexual harassment in the guppy, Poecilia reticulata. Proc R Soc Lond B 258:89–92CrossRefGoogle Scholar
  29. Magurran AE, Seghers BH (1994b) Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proc R Soc Lond B 255:31–36CrossRefGoogle Scholar
  30. McLennan DA, Ryan MJ (1997) Responses to conspecific and heterospecific olfactory cues in the swordtail Xiphophorus cortezi. Anim Behav 54:1077–1088PubMedCrossRefGoogle Scholar
  31. Miller RR (1966) Geographic distribution of Central American freshwater fishes. Copeia 1966:773–802CrossRefGoogle Scholar
  32. Miller RR (2005) Freshwater fishes of Mexico. Chicago University Press, ChicagoGoogle Scholar
  33. Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environ Biol Fish 62:87–96CrossRefGoogle Scholar
  34. Parzefall J (1969) Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschließlich einer Höhlenform von Mollienesia sphenops. Behaviour 33:1–37PubMedGoogle Scholar
  35. Parzefall J (1970) Morphologische Untersuchungen an einer Höhlenform von Mollienesia sphenops (Pisces, Poeciliidae). Z Morph Tiere 68:323–342CrossRefGoogle Scholar
  36. Parzefall J (1973) Attraction and sexual cycle of Poeciliids. In: Schröder J H (ed ) Genetics and mutagenesis of fish. Springer Berlin, Heidelberg, New York, pp 177–183Google Scholar
  37. Parzefall J (1974) Rückbildung aggressiver Verhaltensweisen bei einer Höhlenform von Mollienesia sphenops (Pisces, Poeciliidae). Z Tierpsychol 35:66–84PubMedGoogle Scholar
  38. Parzefall J (1976) Die Rolle der chemischen Information im Verhalten des Grottenolms Proteus anguinus Laur. (Proteidae, Urodela). Z Tierpsychol 42:29–49Google Scholar
  39. Parzefall J (1979) Zur Genetik und biologischen Bedeutung des Aggressionsverhaltens von Poecilia sphenops (Pisces, Poeciliidae). Z Tierpsychol 50:399–422Google Scholar
  40. Parzefall J (1993a) Behavioural ecology of cave-dwelling fishes. In: Pitcher T J (ed ) Behaviour of teleost fishes, second edition. Chapman & Hall, London, pp 573–608Google Scholar
  41. Parzefall J (1993b) Schooling behaviour in population-hybrids of Astyanax fasciatus and Poecilia mexicana (Pisces, Characidae and Poeciliidae). In: Schröder H, Bauer J, Schartl M (eds ) Trends in Ichthyology: an international perspective. Blackwell Scientific, Oxford, pp 297–303Google Scholar
  42. Parzefall J (2001) A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. Environ Biol Fish 62:263–275CrossRefGoogle Scholar
  43. Parzefall J, Durand JP, Richard B (1980) Chemical communication in Necturus maculosus and his cave living relative Proteus anguinus (Proteidae, Urodela). Z Tierpsychol 53:133–138Google Scholar
  44. Parzefall J, Behrens J, Döbler M, Reifenstein K (2000) Chemical communication in the Pyrenean salamander Euproctus asper (Caudata, Salamandridae). Mem Biospeol 27:123–129Google Scholar
  45. Peters N, Peters G, Parzefall J, Wilkens H (1973) Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Int Rev Ges Hydrobiol 58:417–436CrossRefGoogle Scholar
  46. Pilastro A, Benetton S, Bisazza A (2003) Female aggregation and male competition reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Anim Behav 65:1161–1167CrossRefGoogle Scholar
  47. Plath M, Körner KE, Schlupp I, Parzefall J (2001) Sex recognition and female preferences of cave mollies Poecilia mexicana (Poeciliidae, Teleostei) in light and darkness. Mem Biospeol 28:163–167Google Scholar
  48. Plath M, Parzefall J, Schlupp I (2003a) The role of sexual harassment in cave and surface dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309CrossRefGoogle Scholar
  49. Plath M, Wiedemann K, Parzefall J, Schlupp I (2003b) Sex recognition in surface and cave dwelling male Atlantic mollies Poecilia mexicana (Poeciliidae, Teleostei). Behaviour 140:765–782CrossRefGoogle Scholar
  50. Plath M, Brümmer A, Schlupp I (2004a) Sexual harassment in a livebearing fish (Poecilia mexicana): influence of population-specific male mating behaviour. Acta Ethol 7:65–72CrossRefGoogle Scholar
  51. Plath M, Parzefall J, Körner KE, Schlupp I (2004b) Sexual selection in darkness? Female mating preferences in surface and cave dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 55:596–601CrossRefGoogle Scholar
  52. Plath M, Heubel KU, Schlupp I (2005a) Field observations on male mating behavior in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana, Poeciliidae) Z Fischk 7(2):113–119Google Scholar
  53. Plath M, Heubel KU, García de León FJ, Schlupp I (2005b) Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well fed males. Behav Ecol Sociobiol 58:144–151CrossRefGoogle Scholar
  54. Plath M, Rohde M, Schröder T, Taebel-Hellwig A, Schlupp I (2006a) Female mating preferences in blind cave tetras Astyanax fasciatus (Characidae, Teleostei). Behaviour 143:15–32CrossRefGoogle Scholar
  55. Plath M, Seggel U, Burmeister H, Heubel KU, Schlupp I (2006b) Choosy males from the underground: Male mate choice in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Naturwissenschaften 93:103–109PubMedCrossRefGoogle Scholar
  56. Plath M, Hauswaldt JS, Moll K, Tobler M, García de León FJ, Schlupp I, Tiedemann R (2007a) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, from a Mexican cave with toxic hydrogen sulfide. Mol Ecol 16:967–976PubMedCrossRefGoogle Scholar
  57. Plath M, Makowicz AM, Schlupp I, Tobler M (2007b) Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 18:680-688Google Scholar
  58. Plath M, Tobler M, Riesch R, García de León FJ, Giere O, Schlupp I (2007c) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften (in press) DOI 10.1007/s00114-007-0279-2
  59. Poschadel JR, Rudolph A, Warbeck A, Plath M (2005) Influence of visual and chemical cues on the aggregation behavior of Pyrenean mountain newts, Euproctus asper (Urodela, Salamandridae). Subterran Biol 3:63–68Google Scholar
  60. Poschadel JR, Rudolph A, Plath M (2007) Non-visual mate choice in the Pyrenean mountain newt (Euproctus asper): females prefer small males. Acta Ethol 10:35–40CrossRefGoogle Scholar
  61. Riesch R, Schlupp I, Tobler M, Plath M (2006) Reduction of the association preference for conspecifics in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. Behav Ecol Sociobiol 60:794–802CrossRefGoogle Scholar
  62. Romero A, Green SM (2005) The end of regressive evolution: examining and interpreting the evidence from cave fishes. J Fish Biol 67:3–32CrossRefGoogle Scholar
  63. Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Ein Beitrag zur Evolution der Cavernicolen. Z Morph Tiere 61:255–316CrossRefGoogle Scholar
  64. Schlupp I, Parzefall J, Schartl M (1991) Male mate choice in mixed bisexual/unisexual breeding complexes of Poecilia (Teleostei: Poeciliidae). Ethology 88:215–222CrossRefGoogle Scholar
  65. Schlupp I, McKnab R, Ryan MJ (2001) Sexual harassment as a cost for molly females: Bigger males cost less. Behaviour 138:277–286CrossRefGoogle Scholar
  66. Tobler M, Schlupp I, Heubel KU, Riesch R, García de León FJ, Giere O, Plath M (2006) Life on the edge: Hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585PubMedCrossRefGoogle Scholar
  67. Walters LH, Walters VW (1965) Laboratory observations on a cavernicolous poeciliid from Tabasco, Mexico. Copeia 1965:214–233CrossRefGoogle Scholar
  68. Weber A (1995) The lateral line system of epigean and cave dwelling catfishes of the genus Rhamdia (Pimelodidae, Teleostei) in Mexico. Mem Biospeol 22:215–225Google Scholar
  69. Weber A (2000) Fish and amphibia. In: Wilkens H, Culver DC, Humphries WF (eds ) Ecosystems of the world 30: Subterranean ecosystems. Elsevier, Amsterdam, pp 109–132Google Scholar
  70. Weber A, Proudlove GS, Parzefall J, Wilkens H, Nalbant TT (1998) Pisces (Teleostei): morphology, systematic diversity, distribution and ecology of stygobitic fishes. In: Juberthie C, Decu V (eds ) Encyclopaedia Biospeologica, Vol 2 Société de Biospéologie, Moulis, Bucarest, pp 1–8Google Scholar
  71. Wenzel M (1997) Einfluß optischer und chemischer Reize auf Partnerwahlentscheidungen im Poecilia formosa Fortpflanzungskomplex (Teleostei, Poeciliidae). Unpublished diploma thesis, University of HamburgGoogle Scholar
  72. Wilkens H (1982) Regressive evolution and phylogenetic age: The history of colonization of freshwaters of Yucatan by fish and crustacea. Bull Tex Mem Mus 28:237–243Google Scholar
  73. Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol Biol 23:271–367Google Scholar
  74. Wyatt TD (2003) Pheromones and animal behaviour, communication by smell and taste. Cambridge University Press, CambridgeGoogle Scholar
  75. Zeiske E (1968) Prädispositionen bei Mollienesia sphenops (Pisces, Poeciliidae) für einen Übergang zum Leben in subterranen Gewässern. Z vergl Physiol 58:190–222CrossRefGoogle Scholar
  76. Zeiske E (1971) Ethologische Mechanismen als Voraussetzung für einen Übergang zum Höhlenleben. Untersuchungen an Kaspar-Hauser-Männchen von Poecilia sphenops (Pisces, Poeciliidae). Forma functio 4/1971:270–282Google Scholar

Copyright information

© Springer-Verlag and ISPA 2007

Authors and Affiliations

  1. 1.Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and BiologyUniversität PotsdamPotsdamGermany
  2. 2.Zoological InstituteUniversity of ZürichZürichSwitzerland
  3. 3.Department of ZoologyUniversity of OklahomaNormanUSA

Personalised recommendations