Skip to main content
Log in

Electronic device adaptable to motorized wheelchair as smart navigation system

  • Short Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

Technological development offers new opportunities for people with disabilities, to improve their quality of life and increase their inclusion in society. Motor disability is an alteration that affects, at different levels, the movement or manipulation of a person. This paper presents the design and construction of the second version of an electronic device adaptable to a motorized wheelchair that serves as an intelligent navigation system. The first version of the electronic device only allowed for control of the wheelchair through head movements and voice commands. In this new version, the previous functions were improved and two new functions were incorporated. Muscle flexion and muscle contraction increase the options to control a motorized wheelchair by people with greater limitation of movement. The tests carried out demonstrate the viability of the prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adecco, F.: Tecnologías y discapacidad (2017). https://fundacionadecco.org/wp-content/%20uploads/2016/07/Informe-Tecnolog/%C3/%ADa-yDiscapacidad.-Fundaci/%C3%B3n-Adecco-y-Keysight2017.pdf. Accessed March 23 (2019)

  2. Ahmad, S., Siddique, N., Tokhi, M.: Modelling and simulation of double-link scenario in a two-wheeled wheelchair. Integr. Computer-Aid Eng. 21(2), 119–132 (2014)

    Article  Google Scholar 

  3. Ajuda, S.C., Torra-Sorribes, M.: Wheelchair that can be raised and converted into a stretcher (2013). https://www.google.com/patents/WO2009010602A1?cl=en. Accessed June 20 (2018)

  4. Arduino: Arduino uno rev3 (2020). https://store.arduino.cc/usa/arduino-uno-rev3. Accessed September 6 (2019)

  5. Babri, O., Malik, S., Ibrahim, T., Ahmed, Z.: Voice controlled motorized wheelchair with real time obstacle avoidance. In: Proceedings of the Third International Conference on Communications and Information Technology (ICCIT), IEEE (2012)

  6. Bravo, L., Granados, W.: Design of a mobility device por disabled people using the method of quality function deployment. Ingeniería (2014)

  7. Cabero, Almenara, J.: Tics for equality: the digital divide and disability. In: Anales de La Universidad Metropolitana, 8, 15–43 (2008)

  8. Champaty, B., Jose, J., Pal, K., Thirugnanam, A.: Development of eog based human machine interface control system for motorized wheelchair (2014)

  9. Chauhan, R., Jain, Y., Agarwal, H., Patil, A.: Study of implementation of voice controlled wheelchair. In: 2016 3Rd International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 1–4. IEEE (2016)

  10. de Derechos Humanos, C.N.: AtenciÓn a las personas con discapacidad (2019). https://www.cndh.org.mx/programa/32/atencion-las-personas-con-discapacidad. Accessed September 18 (2019)

  11. Ding, D., Cooper, R.: Electric powered wheelchairs. Control Syst. Mag. pp. 22–34 (2005)

  12. Erdem, R.: Students with special educational needs and assistive technologies: a literature review. Turkish Online J. Educ. Technol-TOJET 16(1), 128–146 (2017)

    MathSciNet  Google Scholar 

  13. Ferati, M., Babar, A., Carine, K., Hamidi, A., Mörtberg, C.: Participatory design approach to internet of things: Co-designing a smart shower for and with people with disabilities. In: International Conference on Universal Access in Human-Computer Interaction, pp. 246–261. Springer (2018)

  14. Fezari, M., Bousbia-Salah, M., Bedda, M.: Voice and sensor for more security on an electric wheelchair. In: 2006 2nd International Conference on Information and Communication Technologies, 1, 854–858. IEEE (2006)

  15. Fusco, D.A., Balbinot, A.: Prototype for managing the wheelchair movements by accelerometry. Sens. Transducers 126(3), 31 (2011)

    Google Scholar 

  16. Gautam, G., Sumanth, G., Karthikeyan, K., Sundar, S., Venkataraman, D.: Eye movement based electronic wheel chair for physically challenged persons. Int. J. Sci. Technol. Res. 3(2), 206–212 (2014)

    Google Scholar 

  17. Hardiansyah, R., Ainurrohmah, A., Tyas, F.H., et al.: The electric wheelchair control using electromyography sensor of arm muscle. In: 2016 International Conference on Information and Communication Technology and Systems (ICTS), pp. 129–134. IEEE (2016)

  18. Hinkel, III, J.B.: Head-guided wheelchair control system. In: Proceedings of the 12th international ACM SIGACCESS conference on Computers and accessibility, pp. 313–314 (2010)

  19. INEGI: Instituto Nacional de Estadistica, Geografia e Informatica (2010 (Accessed February 3, 2019)). http://cuentame.inegi.org.mx/poblacion/discapacidad.aspx

  20. INEGI: Instituto Nacional de Estadistica, Geografia e Informatica (2019 (Accessed September 18, 2019)). Discapacidad. La discapacidad en M’excico datos al (2014)

  21. Jameel, H.F., Mohammed, S.L., Gharghan, S.K.: Wheelchair control system based on gyroscope of wearable tool for the disabled. In: IOP Conference Series: Materials Science and Engineering, 745, 012091. IOP Publishing (2020)

  22. Krahn, G.L.: Who world report on disability: a review. Disabil. Health J. 4(3), 141–142 (2011)

    Article  Google Scholar 

  23. Lee, G., Kim, K., Kim, J.: Development of hands-free wheelchair device based on head movement and bio-signal for quadriplegic patients. Int. J. Precis. Eng. Manuf. 17(3), 363–369 (2016)

    Article  Google Scholar 

  24. Mazo, M., Rodríquez, F., Lázaro, L., Ureña, J., García, J., Snatiso, E., Revenga, P., Jesús, G.: Wheelchair for physically disabled people with voice, ultrasonic and infrared sensor control. Auton. Robots pp. 203–224 (1995)

  25. Mechatronics, H.: Arduino and hc-05 bluetooth module tutorial (2019). https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-05-bluetooth-module-tutorial/. Accessed July 6 (2019)

  26. Naeem, A., Qadar, A., Safdar, W.: Voice controlled intelligent wheelchair using raspberry pi. Int. J. Technol. Res. 2(2), 65 (2014)

    Google Scholar 

  27. Nas, K., Yazmalar, L., Şah, V., Aydın, A., Öneş, K.: Rehabilitation of spinal cord injuries. World J. Orthop. 6(1), 8 (2015)

    Article  Google Scholar 

  28. Nations, U.: People with disabilities fight against exclusion (2018). https://www.un.org/development/desa/es/news/social/report-on-disability-and-development.html. Accessed Octuber 15 (2019)

  29. Neto, A.Z., Mesquita, A., Spindola, M.M., Magnani, M.: Prototype of a wheelchair controlled by cervical movements. In: 2014 IEEE International Conference on Bioinformatics and Bioengineering, pp. 134–140. IEEE (2014)

  30. Organization, W.H.: Assistive technology (2018). https://www.who.int/news-room/fact-sheets/detail/assistive-technology/

  31. Parallax: Tilt and acceleration with the mx2125 (2020). http://learn.parallax.com/tutorials/language/propeller-c/propeller-c-simple-devices/tilt-and-acceleration-mx2125. Accessed January 10 (2020)

  32. Patel, S.N., Prakash, V.: Autonomous camera based eye controlled wheelchair system using raspberry-pi. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–6. IEEE (2015)

  33. Prusas, B., Mansoor, K., Engelhardt, L., Walgers, B., Pirtilä, S.I., Lukoschek, L., Defez, Garcia, B., Lengua, Lengua, I., Peris, Fajarnes, G.: Design of an add-on device for transform a standard wheelchair on an affordable and motorized (2020)

  34. Purwanto, D., Mardiyanto, R., Arai, K.: Electric wheelchair control with gaze direction and eye blinking. Artif. Life Robot. 14(3), 397 (2009)

    Article  Google Scholar 

  35. Rabhi, Y., Mrabet, M., Fnaiech, F.: A facial expression controlled wheelchair for people with disabilities. Comput. Methods Programs Biomed. 165, 89–105 (2018)

    Article  Google Scholar 

  36. Rabhi, Y., Mrabet, M., Fnaiech, F.: Intelligent control wheelchair using a new visual joystick. J. Healthcare Eng. 2018 (2018)

  37. Rajesh, A.N., Chandralingam, S., Anjaneyulu, T., Satyanarayana, K.: Eog controlled motorized wheelchair for disabled persons. Int. J. Med. Health Biomed. Bioeng. Pharm. Eng. 8(5), 302–305 (2014)

    Google Scholar 

  38. Salcedo, L., Torres, C., Urriolagoitia, G., Romero, B.: Rediseńo para la optimización de una silla de ruedas eléctrica de dos posiciones. \(10^{\circ }\) Congreso Nacional de Mecatrónica (2011)

  39. Sandoval-Bringas, J.A., Carreño-León, M.A., Espiritu-Jimenez, M.A., Durán-Encinas, I., Chávez, A.: Construcción de un prototipo de silla de ruedas motorizada de bajo costo para personas con lesión medular. Res. Comput. Sci. 108, 135–142 (2015)

    Article  Google Scholar 

  40. SEDESOL: Diagnstico sobre la situación de las personas con discapacidad en m’exico (2016). https://www.gob.mx/publicaciones/articulos/diagnostico-sobre-la-situacion-de-las-personas-con-discapacidad-en-mexico?idiom=es. Accessed July 12 (2019)

  41. Shore, S., Juillerat, S.: The impact of a low cost wheelchair on the quality of life of the disabled in the developing world. MedSciMonit pp. 534–542 (2012)

  42. Sparkfun: Sparkfun start something (2020). https://www.sparkfun.com/products/10264. Accessed November 6 (2019)

  43. Tdrobotica: tdrobotica (2020). https://tienda.tdrobotica.co/biomedicos/397-sensor-de-musculo-mioelectrico.html. Accessed October 15 (2019)

  44. Wang, D., Yu, H.: Development of the control system of a voice-operated wheelchair with multi-posture characteristics. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 151–155. IEEE (2017)

  45. WHO: World Health Organization (2019 (Accessed September 18, 2019)). http://www.who.int/disabilities/worldreport/2011/es/

  46. Yunardi, R.T., Dina, N.Z., Agustin, E.I., Firdaus, A.A.: Visual and gyroscope sensor for head movement controller system on meal-assistance application. Majlesi J. Electr. Eng. 14(3), 39–44 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrés Sandoval-Bringas.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandoval-Bringas, J.A., Carreño-León, M.A., Sandoval-Carreño, M.A. et al. Electronic device adaptable to motorized wheelchair as smart navigation system. Univ Access Inf Soc 22, 1135–1142 (2023). https://doi.org/10.1007/s10209-022-00889-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-022-00889-5

Keywords

Navigation