Skip to main content

Customized daltonization: adaptation of different image types for observers with different severities of color vision deficiencies


The color vision deficiency, popularly called daltonism or color-blindness, manifests with limited color discrimination ranging from slightly reduced to complete loss of color. The accessibility of color-coded digital information is still an unsolved issue for approximately 200 million users affected by this condition. The previous research yielded various image adaptation methods, referred to in the literature as daltonization methods that aim to compensate for weak color perception. However, none of them is applicable for all forms of color vision deficiencies and all image types. The manuscript proposes two image adaptation types that can be scaled and combined: type-based, increasing blue-yellow contrast, and severity-based adaptation that enhances red-green contrast. The quantitative, colorimetric evaluation confirmed that resulting images have an enhanced chromatic contrast, a larger color gamut, and additional image dominant colors compared to original images. The visual assessment involving ten color-deficient observers revealed that the degree of anomalous color perception (mild, moderate, or severe) and the type of image content (natural or artificial) influenced the image preference. The evaluation results demonstrated that the proposed image adaptations customized for the level of color vision anomaly outperformed the state-of-the-art daltonization focused on optimizing contrast for severe, dichromatic cases of deficiency. Furthermore, the color-deficient observers’ choice of preference shifts from subtle color changes, in the case of natural scenes, to exaggerated yellow-blue contrast enhancement for infographics and data visualizations. The extracted conclusions suggest that a customized concept of image adaptation for the specific application and the specific color-deficient user is a better solution than existing methods that neglect the diversity of CVD forms and image types.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Simon-Liedtke, J.T.: Assessment and design of color vision deficiency simulation and daltonization methods. Dissertation, Norwegian University of Science and Technology (2016)

  2. 2.

    Simon-Liedtke, J.T., Farup, I., Laeng, B.: Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM. In: Proceedings of IS&T/SPIE Electronic Imaging, 93. International Society for Optics and Photonics, San Francisco, CA, USA (2015)

  3. 3.

    Fairchild, M.: Color Appearance Models. Wiley, Chichester (2005)

    Google Scholar 

  4. 4.

    Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formula. Wiley, Chichester (2000)

    Google Scholar 

  5. 5.

    Sharpe, L.T., Stockman, A., Jägle, H., Nathans, J.: Opsin Genes, Cone Photopigments, Color Vision, and Color Blindness, Color Vision: From Genes to Perception. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. 6.

    Machado, G.M.: A Model for Simulation of Color Vision Deficiency and a Color Contrast Enhancement Technique for Dichromats. Dissertation, Universidade Federal do Rio Grande do Sul (2010)

  7. 7.

    CIE TC1-89 Technical Report, Enhancement of Images for Colour-Deficient Observers (2020)

  8. 8.

    Cvetković, D., Cvetković, D.: Nasledne anomalije kolornog vida: od Daltona do molekularne genetike. Srp. Arh. Celok. Lek. 133, 521–527 (2005).

    Article  Google Scholar 

  9. 9.

    Neitz, J., Neitz, M.: The genetics of normal and defective color vision. Vision 51, 633–651 (2011).

    Article  Google Scholar 

  10. 10.

    Mollon, J.D., Regan, B.C.: Cambridge Color Test. Cambridge Research Systems, Cambridge (2000)

    Google Scholar 

  11. 11.

    Byrne, A., Hilbert, D.R.: How Do Things Look to the Color-blind? Color Ontology and Color Science. The MIT Press, Cambridge (2010)

    Google Scholar 

  12. 12.

    Brettel, H., Vienot, F., Mollon, J.D.: Computerized simulation of color appearance for dichromats. J Opt. Soc Am. 14, 2647–2655 (1997).

    Article  Google Scholar 

  13. 13.

    Vienot, F., Brettel, H., Mollon, J.D.: Digital video colormaps for checking the legibility of displays by dichromats. Color Res. Appl. 24:243-252 (1999).<243::AID-COL5>3.0.CO;2-3

  14. 14.

    Vienot, F., Brettel, H., Ott, L., M’Barek, A.B., Mollon, J.D.: What do color-blind people see? Nature 376, 127–128 (1995)

  15. 15.

    Machado, G.M., Oliveira, M.M., Fernandes, L.A.F.: A physiologically- based model for simulation of color vision deficiency. IEEE Trans. Vis. Comput. Graph. 15, 1291–1298 (2009)

    Article  Google Scholar 

  16. 16.

    Milić, N., Novaković, D., Milosavljević, B.: Enhancement of Image Content for Observers with Color Vision Deficiencies. In: Celebi, E., Lecca, M., Smolka, B. (eds.), Springer, pp. 315–353 (2015)

  17. 17.

    Vischeck, Daltonize corrects images for colorblind viewers Accessed 20 (2015)

  18. 18.

    Adobe Color, Acessibility Tool, Accessed 20 2020

  19. 19.

    Visolve Accessed 20 2020

  20. 20.

    Chrome Daltonize, Accessed 20 December 2020 (2015)

  21. 21.

    Lau, C., Perdu, N., Rodríguez-Pardo, C.E., Süsstrunk, S., Sharma, G.: An interactive app for color deficient viewers. In: SPIE/IS&T Electronic Imaging, International Society for Optics and Photonics (2015).

  22. 22.

    Shawn, L.H.: W3C: world wide web consortium (W3C): introduction to web accessibility (WAI). Accessed 5 (2019)

  23. 23.

    W3C, Complete List of Web Accessibility Evaluation Tools. Accessed 5 (2020)

  24. 24.

    Jefferson, L., Harvey, R.: An interface to support color blind computer users. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems (2007).

  25. 25.

    Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe, S., Fukami, K.: Web-page color modification for barrier-free color vision with genetic algorithm, GECCO. Genetic Evol. Computat. GECCO 2003, 2134–2146 (2003).

    Article  MATH  Google Scholar 

  26. 26.

    Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe Tanabe, S., Fukami, K.: Preliminary study on color modification for still images to realize barrier-free color vision. Proc. IEEE ICSMC (2004).

    Article  MATH  Google Scholar 

  27. 27.

    Lau, C., Heidrich, W., Mantiuk, R.: Cluster-based color space optimizations. In: Proceedings of IEEE ICCV, pp. 1172-1179 (2011)

  28. 28.

    Rasche, K., Geist, R., Westall, J.: Re-coloring images for gamuts of lower dimension. CGF 24, 423–432 (2005)

    Google Scholar 

  29. 29.

    Milić, N., Hoffmann, M., Tómács, T., Novaković, D., Milosavljević, B.: A region-based naturalness-preserving daltonization method for dichromatic and anomalous trichromatic color vision deficiencies. J. Imaging Sci. Technol. 59, 10504–10511 (2016).

    Article  Google Scholar 

  30. 30.

    Kuhn, G.R., Oliveira, M.M., Fernandes, L.A.: An efficient naturalness-preserving image-recoloring method for dichromats. IEEE TVCG 14, 1747–1754 (2008).

    Article  Google Scholar 

  31. 31.

    Zhu, Z., Toyoura, M., Go, K., et al.: Processing images for red-green dichromats compensation via naturalness and information-preservation considered recoloring. Vis. Comput. 35, 1053–1066 (2019).

    Article  Google Scholar 

  32. 32.

    Hassan, M.F., Paramesran, R.: Naturalness preserving image recoloring method for people with red-green deficiency. Signal Process. Image Commun. 57, 126–133 (2017).

    Article  Google Scholar 

  33. 33.

    Kotera, H.: A Study on Spectral Response for Dichromatic Vision. In: The 19th Color and Imaging Conference (2011)

  34. 34.

    Kotera, H.: Optimal daltonization by spectral shift for dichromatic vision. In: 20th Color and Imaging Conference (2012)

  35. 35.

    Machado, G.M., Oliveira, M.M.: Real-time temporal-coherent color contrast enhancement for dichromats. Comput. Graph. Forum 29, 933–942

  36. 36.

    Farnsworth-Munsell 100 Hue Scoring Software. Accessed 5 (2021)

  37. 37.

    Engeldrum, P.G.: Psychometric Scaling. Imcotec Press, Winchester (2000)

    Google Scholar 

Download references


This research (paper) has been supported by the Ministry of Education, Science and Technological Development through project no. 451-03-68/2020-14/200156: “Innovative scientific and artistic research from the FTS (activity) domain”.

Author information



Corresponding author

Correspondence to Stefan Ɖurđević.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keresteš, N.M., Ɖurđević, S., Novaković, D. et al. Customized daltonization: adaptation of different image types for observers with different severities of color vision deficiencies. Univ Access Inf Soc (2021).

Download citation


  • Color vision deficiency (CVD)
  • Accessibility
  • Image adaptation
  • Customization
  • Digital environment
  • Image content
  • Color gamut
  • Subjective evaluation