Skip to main content

Mobile learning for hearing-impaired children: Review and analysis

Abstract

Currently, a common objective for most countries is including people with disabilities in the various aspects of everyday life. As part of this objective, access to computer technologies that can help improve the learning of these people should be considered. In the case of hearing impairment, cochlear implants allow children with severe or profound hearing loss to develop natural language, which increases their chances of insertion in mainstream schools. However, the success of this depends on the auditory training process that involves various professionals and family members surrounding the implanted child. In this context, the use of mobile technologies has advantages due to their low cost and ubiquity; using mobile phones, children could learn new concepts as they train their hearing skills. Considering the above, in this paper, we present a review of mobile applications that hearing-impaired people can use for their learning and auditory training. The review is organized in two parts: (a) a systematic literature review, which included 297 articles on mobile technologies applied to hearing loss, and (b) a review of mobile applications aimed at teaching and training hearing-impaired children, which included 43 applications. The review was carried out taking into account technological, pedagogical and auditory aspects. The results obtained show the scarcity of learning applications that contribute to language development in hearing-impaired children. Additionally, some aspects that could be considered in the design of new mobile applications have also been identified, such as lack of visual interfaces based on augmented reality. This study opens up a new area where researchers and developers could work together in context-based mobile learning for hearing-impaired children.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    UNESCO: Guidelines for Inclusion: Ensuring Access to Education for All. UNESCO, Paris (2005)

    Google Scholar 

  2. 2.

    United Nations. Convention on the Rights of Persons with Disabilities and its Optional Protocol. Res 61/106. New York (2006)

  3. 3.

    World Federation of the Deaf. WFD Position Paper on Inclusive Education. Approved by WFD Board on 10 May 2018. Helsinski. (2018). https://wfdeaf.org/wp-content/uploads/2018/07/WFD-Position-Paper-on-Inclusive-Education-5-June-2018-FINAL-without-IS.pdf.

  4. 4.

    Constantinou, V., Ioannou, A., Klironomos, I., Antona, M., Stephanidis, C.: Technology support for the inclusion of deaf students in mainstream schools: a summary of research from 2007 to 2017. Universal Access in the Information Society. Ed. Springer. Germany. (2018). https://doi.org/10.1007/s10209-018-0630-8.

  5. 5.

    Duarte, I., Santos, C.C., Rego, G., Nunes, R.: School failure in students who are normal-hearing or deaf: with or without cochlear implants. Springerplus 5, 237 (2016). https://doi.org/10.1186/s40064-016-1927-9

    Article  Google Scholar 

  6. 6.

    Leybaert, J., Colin, C., Willems, P., Colin, S., Nouelle, M., Schepers, F., Renglet, T., Mansbach, A., Simon, P., Ligny, Ch.: Implant cochlèaire, plasticité cérébrale et développement du langage. In Surdité et langage. Prothèses LPC et implant cochléaire. Direction: López Krahe, J. Ed. Presses Universitaires Vincennes. ISBN 978 2 84292 195 8. Paris. (2007)

  7. 7.

    Erber, N.: Auditory Training. AG Bell Association, Washington DC (1982)

    Google Scholar 

  8. 8.

    Hirsh, I.: Audition in relation to perception of speech. In: Carterette, E. (ed.) Brain function III: Speech, language and communication, pp. 93–116. University of California Press, Berkeley, CA (1966)

    Chapter  Google Scholar 

  9. 9.

    Kelman, C.A., Branco, A.U.: (Meta) Communication strategies in inclusive classes for deaf students. Am. Ann. Deaf 154(4), 371–381 (2009)

    Article  Google Scholar 

  10. 10.

    Archbold, S., Mayer, C.: Deaf education: the impact of cochlear implantation? Deaf. Educ. Int. 14(1), 2–15 (2012)

    Article  Google Scholar 

  11. 11.

    De Raeve, L.: Education and rehabilitation of deaf children with cochlear implants: a multidisciplinary task. Cochlear Implant. Int. 11(1), 7–14 (2010)

    Article  Google Scholar 

  12. 12.

    Herrera, S., Palavecino, R., Sanz, C., Carranza, J.: Aprendizaje de Estructuras de Datos mediante m-learning. I Simpósio Ibero-Americano de Tecnologias Educacionais. ISSN 2594–388X. Araranguá, SC, Brazil. (2017)

  13. 13.

    Sung, Y., Chang, K., Liu, T.: The effects of integrating mobile devices with teaching and learning on students’ learning performance: a meta-analysis and research synthesis. Comput. Educ. 94, 252–275 (2016). https://doi.org/10.1016/j.compedu.2015.11.008. (ISSN 0360-1315)

    Article  Google Scholar 

  14. 14.

    Herrera, S., Sanz, C.: Collaborative m-learning practice using Educ-Mobile. International Conference on Collaboration Technologies and Systems (CTS). Ed. IEEE. Pp. 363 – 370. ISBN: 978–1–4799–5157–4. Minneapolis, MN, USA. (2014)

  15. 15.

    Pachler, N., Bachmair, B., Cook, J.: Mobile learning: structures, agency, practices. Ed. Springer. ISBN 978–1–4419–0584–0. New York. (2010)

  16. 16.

    Proksch, J., Bavelier, D.: Changes in the spatial distribution of visual attention after early deafness. J. Cogn. Neurosci. 14(5), 687–701 (2002). https://doi.org/10.1162/08989290260138591

    Article  Google Scholar 

  17. 17.

    Trezek, B.J., Wang, Y.: Implications of utilizing a phonics-based reading curriculum with children who are deaf or hard of hearing. J. Deaf Stud. Deaf Educ. 11(2), 202–213 (2006). https://doi.org/10.1093/deafed/enj031

    Article  Google Scholar 

  18. 18.

    Dye, M., Bavelier, D.: Attentional enhancements and deficits in deaf populations: an integrative review. J. Restor. Neurol. Neurosci. 28(2), 181–192 (2010). https://doi.org/10.3233/RNN-2010-0501

    Article  Google Scholar 

  19. 19.

    Arici, F., Yildirim, P., Caliklar, S., Yilmaz, R.: Research trends in the use of augmented reality in science education: content and bibliometric mapping analysis. Comput. Educ. (2019). https://doi.org/10.1016/j.compedu.2019.103647. (ISSN 0360-1315)

    Article  Google Scholar 

  20. 20.

    Morales, M., Herrera, S., Maldonado, M., Budán, P., Rosenzvaig, F.: M-learning con Realidad Aumentada para el aprendizaje significativo en Álgebra Lineal. e-ISSN: 1984–4751. Revista Tecnologias na Educação. Vol. 24. Brazil. (2018). http://tecedu.pro.br/wp-content/uploads/2018/06/Art7-vol.24-Edi%C3%A7%C3%A3o-Tem%C3%A1tica-VII-Junho-2018.pdf.

  21. 21.

    Brezovszky, B., McMullen, J., Veermans, K., Hannula-Sormunen, M., Rodríguez-Aflecht, G., Pongsakdi, N., Laakkonen, E., Lehtinen, E.: Effects of a mathematics game-based learning environment on primary school students’ adaptive number knowledge. Comput. Educ. 128, 63–74 (2019). https://doi.org/10.1016/j.compedu.2018.09.011. (ISSN 0360-1315)

    Article  Google Scholar 

  22. 22.

    Sakkal, A., Martin, L.: Learning to rock: the role of prior experience and explicit instruction on learning and transfer in a music videogame. Comput. Educ. 128, 389–397 (2019). https://doi.org/10.1016/j.compedu.2018.10.007. (ISSN 0360-1315)

    Article  Google Scholar 

  23. 23.

    Kitchenham, B.A.: Procedures for Undertaking Systematic Reviews, Joint Technical Report, Computer Science Department, Keele University (TR/SE- 0401) and National ICT Australia Ltd. (0400011T.1). (2004)

  24. 24.

    Kitchenham, B.A., Pearl Brereton, O., Budgen, D., Turnerm, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering – a systematic literature review. Inf. Softw. Technol. 51, 7–15 (2009). (Ed. Elsevier)

    Article  Google Scholar 

  25. 25.

    Sánchez Rodríguez, M., Collado Vázquez, S., Martín Casas, P., Cano de la Cuerda, R.: Neurorehabilitation and apps: a systematic review of mobile applications. Neurología (English Edition) 33(5), 313–326 (2018)

    Article  Google Scholar 

  26. 26.

    Fernández, A., Fernández, C., Miguel-Dávila, J., Conde, M., Matellán, V.: Supercomputers to improve the performance in higher education: a review of the literature. Comput. Educ. 128, 353–364 (2019). https://doi.org/10.1016/j.compedu.2018.10.004. (ISSN 0360-1315)

    Article  Google Scholar 

  27. 27.

    Herrera, S., Sanz, C., & Fennema, C.: MADE-mlearn: un marco para el análisis, diseño y evaluación de experiencias de m-learning en el nivel de postgrado. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología. N 10. ISSN 1850–9959. La Plata. (2013)

  28. 28.

    Gavroglu, K., Goudaroulis, Y., Nicolacopoulos, P.: Imre Lakatos and Theories of Scientific Change. Springer, Netherlands (1989). https://doi.org/10.1007/978-94-009-3025-4 . (ISBN 978-90-277-2766-4)

    Book  Google Scholar 

  29. 29.

    Harman M., McMinn P., de Souza J.T., Yoo S.: Search Based Software Engineering: Techniques, Taxonomy, Tutorial. In: Meyer B., Nordio M. (eds) Empirical Software Engineering and Verification. LASER 2010, LASER 2009, LASER 2008. Lecture Notes in Computer Science, vol 7007. Springer, Berlin, Heidelberg. (2012). https://doi.org/10.1007/978-3-642-25231-0_1.

  30. 30.

    Hearing Loss Early Detection Program. Santiago del Estero, Argentina. http://www.msaludsgo.gov.ar/web2/index.php?cargar=articulo&id=73. Last accessed on: August, 2019. (2019)

  31. 31.

    Cochlear. www.cochlear.com. Last accessed on: January, 2019 Sydney, Australia. (2019)

  32. 32.

    MED-EL. www.medel.com. Last accessed on: January, 2019 Innsbruck, Austria. (2019)

  33. 33.

    Advanced Bionics. advancedbionics.com. Ultimo acceso: Enero, 2019. California, USA. (2019)

  34. 34.

    Oticon Medical. www.oticonmedical.com. Last accessed on: January, 2019 Copenhagen, Denmark. (2019)

  35. 35.

    John Tracy Center. Los Angeles, USA. www.jtc.org. Last accessed on: January, 2019. (2019)

  36. 36.

    Shen, R., Terada, T., Tsukamoto, M.: A System for Visualizing Sound Source using Augmented Reality. MoMM 2012. Bali, Indonesia. (2012)

  37. 37.

    Salomia, A., Ciupe, A., Meza, S., Orza, B., & Trifan, G.: Assistive AR technology for hearing impairments in driving lessons. In 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, pp. 1–6. (2018). https://doi.org/10.1109/AQTR.2018.8402723.

  38. 38.

    Jaffar, E., Abu Bakar, J., Zulkifli, A.: Elements of museum mobile augmented reality for engaging hearing impaired visitors. AIP Conf. Proc. 1891, 020033 (2017). https://doi.org/10.1063/1.5005366

    Article  Google Scholar 

  39. 39.

    Jaffar, E., Aby Bakar, J., Juliana, A.: Mobile augmented reality for hearing impaired museum engagement (MARHIME): a conceptual model. AIP Conf. Proc. 2016, 020031 (2018). https://doi.org/10.1063/1.5055433

    Article  Google Scholar 

  40. 40.

    Jaramillo-Alcázar, A., Guaita, C., Rosero, J. L., Luján-Mora, S.: Towards an Accessible Mobile Serious Game for Electronic Engineering Students with Hearing Impairments. In 2018 IEEE World Engineering Education Conference (EDUNINE). Buenos Aires, pp. 1–5. (2018). https://doi.org/10.1109/EDUNINE.2018.8450948.

  41. 41.

    Zhu, Y., Mak, B.: An investigation of adaptation techniques for building acoustic models for hearing-impaired children in a CAPT application. In 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP). Tianjin, pp. 1–5. (2016). https://doi.org/10.1109/ISCSLP.2016.7918449.

  42. 42.

    Gacharná, T. A. N., Rodríguez, A. D. Á., Barbosa, C.: Learning strategies in mobile and industrial robotics for people with auditory impairment. In 2016 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, pp. 836–841. (2016). https://doi.org/10.1109/GHTC.2016.7857377.

  43. 43.

    Anindhita, V., Lestari, D. P.: Designing interaction for deaf youths by using user-centered design approach. In 2016 International Conference on Advanced Informatics: Concepts, Theory And Application (ICAICTA). George Town, pp. 1–6. (2016). https://doi.org/10.1109/ICAICTA.2016.7803135.

  44. 44.

    Varga, A. K., Czap, L.: Development of an online subjective evaluation system for recorded speech of deaf and hard of hearing children. In 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Gyor, pp. 455–458. (2015). https://doi.org/10.1109/CogInfoCom.2015.7390636.

  45. 45.

    Kyriacou, E., Charalambous, M., Theodorou, C., Iliophotou, C., Ioannou, M., Hadjichristofi, G.: “Meleti” speech and language development support system. In 13th IEEE International Conference on BioInformatics and BioEngineering, Chania, pp. 1–4. (2013). https://doi.org/10.1109/BIBE.2013.6701623.

  46. 46.

    Chen, Y., Chang, C., Wu, J., Lin, Y.,Yang, H.: Handheld device based personal auditory training system to hearing loss. In 2013 IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies (CIRAT), Singapore, pp. 19–23. (2013). https://doi.org/10.1109/CIRAT.2013.6613818.

  47. 47.

    Belsis, P., Gritzalis, S., Marinagi, C., Skourlas, C., Vassis, D.: Secure Wireless Infrastructures and Mobile Learning for Deaf and Hard-of-Hearing Students. Proceedings of the 2012 16th Panhellenic Conference on Informatics (PCI '12). IEEE Computer Society, Washington, DC, USA, 369–374. (2012). https://doi.org/10.1109/PCi.2012.66.

  48. 48.

    Namatame, M., Matsuda, N.: An Application of Peer Review for Art Education: A Tablet PC Becomes a Language for Students Who are Hard of Hearing. In 2012 IEEE Seventh International Conference on Wireless, Mobile and Ubiquitous Technology in Education, Takamatsu, pp. 190–192. (2012). https://doi.org/10.1109/WMUTE.2012.43.

  49. 49.

    Samonte, M., Bahia, R., Forlaje, S., Del Monte, J., Gonzales, J., Sultan, M.: Assistive Mobile App for Children with Hearing Speech Impairment Using Character and Speech Recognition. Proceedings of the 4th International Conference on Industrial and Business Engineering. ISBN 9781450365574. https://doi.org/10.1145/3288155.3288182. New York. (2018)

  50. 50.

    Shelton, B.E., Parlin, M.A.: Teaching math to Deaf/Hard-of-Hearing DHH children using mobile games: outcomes with student and teacher perspectives. Int. J. Mob. Blend. Learn. 8(1), 1–17 (2016). https://doi.org/10.4018/IJMBL.2016010101

    Article  Google Scholar 

  51. 51.

    Ng’ethe, G., Blake, E.H., Glaser, M.: SignSupport: A Mobile Aid for Deaf People Learning Computer Literacy Skills. Proceedings of the 7th International Conference on Computer Supported Education. Vol. 2 (CSEDU 2015). Markus Helfert, Maria Teresa Restivo, Susan Zvacek, and James Uhomoibhi (Eds.). SCITEPRESS - Science and Technology Publications, Portugal, 501–511. (2015). https://doi.org/10.5220/0005442305010511.

  52. 52.

    Shi, L., An, Z., Zhao, J., Wang, L., Du, Q., Ma, L.: Tongue Rehabilitation Training Method of Hearing-Impaired Child Based on Visualization Model. Proceedings of the 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks (MSN '13). IEEE Computer Society, Washington, DC, USA, Pag. 481–484. (2013). https://doi.org/10.1109/MSN.2013.89.

  53. 53.

    Zhou, Y., Sim, K. C., Tan, P., Wang, Y.: MOGAT: mobile games with auditory training for children with cochlear implants. Proceedings of the 20th ACM international conference on Multimedia (MM '12). ACM, New York, NY, USA, 429–438. (2012). https://doi.org/10.1145/2393347.2393409

  54. 54.

    Silva, C. A. d., Franco, M. H. I., Okuyama, F. Y.: Salabil bilingual education platform. International Symposium on Computers in Education (SIIE), Jerez, pp. 1–5. (2018). https://doi.org/10.1109/SIIE.2018.8586717

  55. 55.

    Luangrungruang, T.,Kokaew, U.: Applying Universal Design for Learning in Augmented Reality Education Guidance for Hearing Impaired Student. 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA), Krabi, Thailand, pp. 250–255. (2018). https://doi.org/10.1109/ICAICTA.2018.8541294.

  56. 56.

    Al-Megren S., Almutairi, A.: Assessing the Effectiveness of an Augmented Reality Application for the Literacy Development of Arabic Children with Hearing Impairments. In: Rau PL. (eds) Cross-Cultural Design. Applications in Cultural Heritage, Creativity and Social Development. CCD 2018. Lecture Notes in Computer Science, vol 10912. Springer, Cham. (2018). https://doi.org/10.1007/978-3-319-92252-2_1.

  57. 57.

    Yu, J., Jeon, H., Song, C., Han, W.: Speech perception enhancement in elderly hearing aid users using an auditory training program for mobile devices. Geriatr. Gerontol. Int. 17(1), 61–68 (2017). https://doi.org/10.1111/ggi.12678. (Epub 2015 Dec 2. PMID: 26628069)

    Article  Google Scholar 

  58. 58.

    García, A., Rozo, Y. & Leguizamón-Páez, M. A.: Prototipo telemático para el aprendizaje de la anatomía humana en niños sordos basado en M_Learning. Revista Educación En Ingeniería, 12(24), 63–75. (2017). https://doi.org/10.26507/rei.v12n24.801.

  59. 59.

    Brouwer, K., Downing, H., Westhoff, S., Wait, R., Entwisle, L.K., Messersmith, J.J., Hanson, E.K.: Effects of clinician-guided emergent literacy intervention using interactive tablet technology for preschool children with cochlear implants. Commun. Disord. Q. 38(4), 195–205 (2017). https://doi.org/10.1177/1525740116666040

    Article  Google Scholar 

  60. 60.

    Yaman, F., Dönmez, O., Avci, E., Yurdakul, I. K.: Integrating mobile applications into hearing impaired children’s literacy instuction. Egitim ve Bilim, 41 (188), 153–174. (2016). https://doi.org/10.15390/EB.2016.6687.

  61. 61.

    Kosmopoulos, D.I., Argyros, A.A., Theoharatos, C., Lambropoulou, V., Panagopoulos, C., Maglogiannis, I.G.: The HealthSign Project: Vision and Objectives. PETRA. (2018)

  62. 62.

    Rao, G.A., Syamala, K., Kishore, P.V., Sastry, A.S.: Deep convolutional neural networks for sign language recognition. In 2018 Conference on Signal Processing and Communication Engineering Systems (SPACES), 194-197. (2018)

  63. 63.

    Perera, Y., Jayalath, N., Tissera, S., Bandara, O., Thelijjagoda, S.: Intelligent mobile assistant for hearing impairers to interact with the society in Sinhala language. In 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), 1–7. (2017).

  64. 64.

    Fang, B., Co, J., Zhang, M.: DeepASL: Enabling Ubiquitous and Non-Intrusive Word and Sentence-Level Sign Language Translation. SenSys. (2017)

  65. 65.

    Dai, Q., Hou, J., Yang, P., Li, X., Wang, F., Zhang, X.: Demo: The Sound of Silence: End-to-End Sign Language Recognition Using SmartWatch. MobiCom. (2017)

  66. 66.

    Marco Algarra, J., Morera Pérez, C., Morant Ventura, A.: LA DEFICIENCIA AUDITIVA. DETECCIÓN PRECOZ DE LA SORDERA INFANTIL. Manual Básico de Formación Especializada sobre Discapacidad Auditiva. 5ª edición. I.S.B.N.: 84–609–3147–1, Madrid. (2013)

  67. 67.

    Chaikaew, A., Somkuan, K., Sarapee, P.: Mobile Application for Thai Sign language. In: 2018 22nd International Computer Science and Engineering Conference (ICSEC). pp. 1–4. (2018)

  68. 68.

    Roy, S., Maiti, A. K., Ghosh, I., Chatterjee, I., Basak, G. K., Ghosh, K.: An app based unified approach to enhance language comprehension and mathematical reasoning ability of the hearing impaired using contrast words. In TENCON 2019. IEEE Region 10 Conference (TENCON), pp. 1711–1716. (2019)

  69. 69.

    Shete, P., Shah, P., Parekh, P., Shah, J.: Text-it-Loud!: Real-Time Captioning and Transcribing App for Inclusive Teaching-Learning of Hearing Impaired. In 2019 IEEE Tenth International Conference on Technology for Education (T4E), pp. 264–265. (2019)

  70. 70.

    Seita, M., Huenerfauth, M.: Deaf Individuals' Views on Speaking Behaviors of Hearing Peers when Using an Automatic Captioning App. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (CHI EA '20). Association for Computing Machinery, New York, NY, USA, 1–8. (2020). https://doi.org/10.1145/3334480.3383083.

  71. 71.

    Meliones, A., Duta, C.: See Speech: An Android application for the hearing impaired. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA '19). Association for Computing Machinery, New York, NY, USA, 509–516. (2019). https://doi.org/10.1145/3316782.3324013.

  72. 72.

    Renuka, C., Swapna, N., Bhavana, P. V., Prabha, L., Abraham, A.K.: Touch Screen: An interactive platform to learn arithmetic concepts for hearing impaired children attending preschool: Case Study. In 2019 1st International Conference on Advances in Information Technology (ICAIT), pp. 382–388. (2019). https://doi.org/10.1109/ICAIT47043.2019.8987275.

  73. 73.

    Barbosa, P. G. F., Amorim, P. F., Leal Ferreira, S.B.: Augmented reality and museum accessibility: a case study to support hard of hearing people. IHC 2019: pp. 14:1–14:10. (2019)

  74. 74.

    Alsumait, A., Faisal, M., Banian, S.: Improving literacy for deaf Arab children using interactive storytelling. In Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services (WAS '15). Association for Computing Machinery, New York, NY, USA, Article 7, 1–5. (2015). https://doi.org/10.1145/2837185.2837187.

  75. 75.

    Flórez-Aristizábal, L., Cano, S., Collazos, C., Moreira, F.: Digital transformation to support literacy teaching to deaf children: from storytelling to digital interactive storytelling. Telematics Inform. (2018). https://doi.org/10.1016/j.tele.2018.09.002

    Article  Google Scholar 

  76. 76.

    Cano, S., Flórez-Aristizábal, L., Collazos, C.A., Fardaoun, H., Alghazzawi, D.M.: Designing interactive experiences for children with cochlear implant. Sensors (Basel, Switzerland) 18(7), 2154 (2018). https://doi.org/10.3390/s18072154

    Article  Google Scholar 

  77. 77.

    Flórez-Aristizábal, L., Cano, S., Collazos, C., Solano, A., Slegers, K.: Collaborative learning as educational strategy for deaf children: a systematic literature review. In Proceedings of the XVIII International Conference on Human Computer Interaction (Interacción '17). Association for Computing Machinery, New York, NY, USA, Article 38, 1–8. (2017). https://doi.org/10.1145/3123818.3123830.

  78. 78.

    Peñeñory, V.M., Collazos, C.A., Bacca, A., Manresa-Yee, C., Cano, S., Fadoun, H.: APRehab: a methodology for serious games design oriented to psychomotor rehabilitation in children with hearing impairments. Univ. Access Inf. Soc. (2020). https://doi.org/10.1007/s10209-020-00728-5

    Article  Google Scholar 

  79. 79.

    Flórez-Aristizábal, L., Cano, S., Collazos, C. A., Solano, A. F., Brewster, S.: DesignABILITY: Framework for the Design of Accessible Interactive Tools to Support Teaching to Children with Disabilities. In: 2019 CHI Conference on Human Factors in Computing Systems (CHI '19), Glasgow, UK, 04–09 May 2019, p. 10. ISBN 9781450359702. (2019)

  80. 80.

    Delía, L., Galdamez, L., Corbalán, P., Pesado, O., Thomas, P.: Approaches to Mobile Application Development: Comparative Performance Analysis. 2017 Computing Conference, London, 2017, pp. 652-659. (2017). https://doi.org/10.1109/SAI.2017.8252165

  81. 81.

    Katz, L., Frost, R.: The reading process is different for different orthographies: The orthographic depth hypothesis. In: Frost, R., Katz, L. (eds.) Orthography, Phonology, Morphology, and Meaning, pp. 67–84. Elsevier North Holland Press, Amsterdam (1992)

    Chapter  Google Scholar 

  82. 82.

    Domínguez, A., Alegría, J., Carrillo, M., González, V.: Learning to read for spanish-speaking deaf children with and without cochlear implants: the role of phonological and orthographic representation. Am. Ann. Deaf 164(1), 37–72 (2019). https://doi.org/10.1353/aad.2019.0009

    Article  Google Scholar 

  83. 83.

    Colin, S., Magnan, A., Ecalle, J., Leybaert, J.: Relation between deaf children’s phonological skills in kindergarten and word recognition performance in first grade. J. Child Psychol. Psychiatry 48, 139–146 (2007). https://doi.org/10.1111/j.1469-7610.2006.01700

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susana I. Herrera.

Ethics declarations

Conflicts of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrera, S.I., Manresa-Yee, C. & Sanz, C.V. Mobile learning for hearing-impaired children: Review and analysis. Univ Access Inf Soc (2021). https://doi.org/10.1007/s10209-021-00841-z

Download citation

Keywords

  • Mobile applications
  • Mobile learning
  • Augmented reality
  • Learning of hearing-impaired children
  • Cochlear implants training