Individual differences and personalized learning: a review and appraisal

Abstract

Personalized learning allows students to pursue individual learning goals at their own pace. Such a benefit is achieved by understanding each individual’s needs. Hence, it is important to implement personalized learning to accommodate students’ individual differences. Due to such importance, research into this issue has increased over the past decade. Accordingly, this paper presents a state-of-the art review of the current research that investigates relationships between individual differences and personalized learning. The main results from past research include that: (1) learning style is a major individual difference considered in works on personalized learning; (2) current works shift to address multiple individual differences, instead of a single difference; (3) learner models are widely applied to deal with multiple individual differences in the development of personalized learning; (4) learning styles, prior knowledge, preferences and ability levels are frequently considered together, and (5) it is a current trend to consider emotion recognition in the context of personalized learning. In addition to reviewing existing empirical studies, this paper also does an appraisal to identify directions for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Akputu, O.K., Seng, K.P., Lee, Y., Ang, L.M.: Emotion recognition using multiple kernel learning toward E-learning applications. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 14(1), 15 (2018)

    Google Scholar 

  2. 2.

    Aleahmad, T., Aleven, V., Kraut, R.: Creating a corpus of targeted learning resources with a web-based open authoring tool. IEEE Trans. Learn. Technol. 2(1), 3–9 (2009)

    Google Scholar 

  3. 3.

    Allen, L.K.: Who Do You Think I Am? Modeling Individual Differences for More Adaptive and Effective Instruction. International Educational Data Mining Society, Uruguay (2015)

    Google Scholar 

  4. 4.

    Allioui, Y.E.: Advanced prediction of learner’s profile based on Felder–Silverman learning styles using web usage mining approach and fuzzy c-means algorithm. Int. J. Comput. Aided Eng. Technol. 11(4–5), 495–512 (2019)

    Google Scholar 

  5. 5.

    Anitha, D., Deisy, C.: Proposing a novel approach for classification and sequencing of learning objects in E-learning systems based on learning style. J. Intell. Fuzzy Syst. 29(2), 539–552 (2015)

    Google Scholar 

  6. 6.

    Ayvaz, U., Gürüler, H., Devrim, M.O.: Use of facial emotion recognition in e-learning systems. Inf. Technol. Learn. Tools 60(4), 95–104 (2017)

    Google Scholar 

  7. 7.

    Baker, R.: Using learning analytics in personalized learning. In: Murphy, M., Redding, S., Twyman, J.S. (eds.) Handbook on Personalized Learning for States, Districts, and Schools, pp. 165–174. Temple University, Center on Innovations in Learning, Philadelphia, PA (2016)

    Google Scholar 

  8. 8.

    Barria-Pineda, J., Guerra-Hollstein, J., Brusilovsky, P.: A fine-grained open learner model for an introductory programming course. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 53–61. ACM (2018)

  9. 9.

    Behaz, A., Djoudi, M.: Ontological representation models for adaptive hypermedia construction. Int. Rev. Comput. Softw. 6(2), 199–205 (2011)

    Google Scholar 

  10. 10.

    Benhamdi, S., Babouri, A., Chiky, R.: Personalized recommender system for e-learning environment. Educ. Inf. Technol. 22(4), 1455–1477 (2017)

    Google Scholar 

  11. 11.

    Benigno, V., Capuano, N., Mangione, G.R.: A web-based knowledge hub for special and inclusive education. Int. J. Emerg. Technol. Learn. 10(7), 5–13 (2015)

    Google Scholar 

  12. 12.

    Bhalli, M.A., Khan, I.A., Sattar, A.: Learning style of medical students and its correlation with preferred teaching methodologies and academic achievement. J. Ayub Med. Coll. Abbottabad 27(4), 837–842 (2016)

    Google Scholar 

  13. 13.

    Bourges-Waldegg, P., Moreno, L., Rojano, T.: The role of usability on the implementation and evaluation of educational technology. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000, p. 7. IEEE (2000)

  14. 14.

    Bourkoukou, O., El Bachari, E.: E-learning personalization based on collaborative filtering and learner’s preference. J. Eng. Sci. Technol. 11(11), 1565–1581 (2016)

    Google Scholar 

  15. 15.

    Brom, C., Hannemann, T., Stárková, T., Bromová, E., Děchtěrenko, F.: The role of cultural background in the personalization principle: five experiments with Czech learners. Comput. Educ. 112, 37–68 (2017)

    Google Scholar 

  16. 16.

    Brown, E.J., Brailsford, T.J., Fisher, T., Moore, A.: Evaluating learning style personalization in adaptive systems: quantitative methods and approaches. IEEE Trans. Learn. Technol. 2(1), 10–22 (2009)

    Google Scholar 

  17. 17.

    Buzzi, M.C., Buzzi, M., Perrone, E., Senette, C.: Personalized technology-enhanced training for people with cognitive impairment. Univ. Access Inf. Soc. 18(4), 891–907 (2019)

    Google Scholar 

  18. 18.

    Cabada, R.Z., Estrada, M.L.B., García, C.A.R.: EDUCA: a web 2.0 authoring tool for developing adaptive and intelligent tutoring systems using a Kohonen network. Expert Syst. Appl. 38(8), 9522–9529 (2011)

    Google Scholar 

  19. 19.

    Cahyani, A.D., Basuki, A., Rohman, E.M.S., Kustiyahningsih, Y.: Design an adaptive e-learning application architecture based on IEEE LTSA reference model. Telecommun. Comput. Electron. Control 13(1), 284–289 (2015)

    Google Scholar 

  20. 20.

    Çakıroğlu, Ü.: Analyzing the effect of learning styles and study habits of distance learners on learning performances: a case of an introductory programming course. Int. Rev. Res. Open Distrib. Learn. 15(4), 161–185 (2014)

    Google Scholar 

  21. 21.

    Chatti, M.A., Muslim, A.: The PERLA framework: blending personalization and learning analytics. Int. Rev. Res. Open Distrib. Learn. 20(1), 243–261 (2019)

    Google Scholar 

  22. 22.

    Chen, C.H., Chang, S.W.: Effectiveness of adaptive assessment versus learner control in a multimedia learning system. J. Educ. Multimed. Hypermedia 24(4), 321–341 (2015)

    Google Scholar 

  23. 23.

    Chen, C.M., Sun, Y.C.: Assessing the effects of different multimedia materials on emotions and learning performance for visual and verbal style learners. Comput. Educ. 59(4), 1273–1285 (2012)

    Google Scholar 

  24. 24.

    Chen, C.M., Wang, H.P.: Using emotion recognition technology to assess the effects of different multimedia materials on learning emotion and performance. Libr. Inf. Sci. Res. 33(3), 244–255 (2011)

    Google Scholar 

  25. 25.

    Chen, S.Y., Huang, P.R., Shih, Y.C., Chang, L.P.: Investigation of multiple human factors in personalized learning. Interact. Learn. Environ. 24(1), 119–141 (2016)

    Google Scholar 

  26. 26.

    Chiu, M.C., Ko, L.W.: Develop a personalized intelligent music selection system based on heart rate variability and machine learning. Multimed. Tools Appl. 76(14), 15607–15639 (2017)

    Google Scholar 

  27. 27.

    Christudas, B.C.L., Kirubakaran, E., Thangaiah, P.R.J.: An evolutionary approach for personalization of content delivery in e-learning systems based on learner behavior forcing compatibility of learning materials. Telemat. Inform. 35(3), 520–533 (2018)

    Google Scholar 

  28. 28.

    Cocea, M., Magoulas, G.D.: Participatory learner modelling design: a methodology for iterative learner models development. Inf. Sci. 321, 48–70 (2015)

    Google Scholar 

  29. 29.

    Conati, C., Kardan, S.: Student modeling: supporting personalized instruction, from problem solving to exploratory open ended activities. AI Mag. 34(3), 13–26 (2013)

    Google Scholar 

  30. 30.

    Daniel, B.: Big Data and analytics in higher education: opportunities and challenges. Br. J. Educ. Technol. 46(5), 904–920 (2015)

    Google Scholar 

  31. 31.

    Dantas, M.L.: Building teacher competency to work with diverse learners in the context of international education. Teach. Educ. Q. 34, 75–94 (2007)

    Google Scholar 

  32. 32.

    DeArmond, M., Maas, T.: Leading Personalized Learning. Center for Inventing Public Education, Seattle, WA (2018)

    Google Scholar 

  33. 33.

    Dorça, F.A., Lima, L.V., Fernandes, M.A., Lopes, C.R.: Automatic student modeling in adaptive educational systems through probabilistic learning style combinations: a qualitative comparison between two innovative stochastic approaches. J. Braz. Comput. Soc. 19(1), 43–58 (2013)

    Google Scholar 

  34. 34.

    Drissi, S., Amirat, A.: An adaptive E-learning system based on student’s learning styles: an empirical study. Int. J. Distance Educ. Technol. (IJDET) 14(3), 34–51 (2016)

    Google Scholar 

  35. 35.

    Duo, S., Song, L.X.: An e-learning system based on affective computing. Phys. Procedia 24, 1893–1898 (2012)

    Google Scholar 

  36. 36.

    Dwivedi, P., Bharadwaj, K.K.: Effective trust-aware e-learning recommender system based on learning styles and knowledge levels. Educ. Technol. Soc. 16(4), 201–216 (2013)

    Google Scholar 

  37. 37.

    El Bouhdidi, J., Ghailani, M., Fennan, A.: An intelligent architecture for generating evolutionary personalized learning paths based on learner profiles. J. Theor. Appl. Inf. Technol. 57(2), 294–304 (2013)

    Google Scholar 

  38. 38.

    El Bouhdidi, J., Ghailani, M., Fennan, A.: A probabilistic approach for the generation of learning sessions tailored to the learning styles of learners. Int. J. Emerg. Technol. Learn. 8(6), 42–49 (2013)

    Google Scholar 

  39. 39.

    El-Bishouty, M.M., Aldraiweesh, A., Alturki, U., Tortorella, R., Yang, J., Chang, T.W., Graf, S.: Use of Felder and Silverman learning style model for online course design. Educ. Technol. Res. Dev. 67(1), 161–177 (2019)

    Google Scholar 

  40. 40.

    Fatahi, S., Moradi, H., Kashani-Vahid, L.: A survey of personality and learning styles models applied in virtual environments with emphasis on e-learning environments. Artif. Intell. Rev. 46(3), 413–429 (2016)

    Google Scholar 

  41. 41.

    Feffer, M., Picard, R.W.: A mixture of personalized experts for human affect estimation. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 316–330. Springer, Cham (2018)

  42. 42.

    Felder, R.M., Brent, R.: Understanding student differences. J. Eng. Educ. 94(1), 57–72 (2005)

    Google Scholar 

  43. 43.

    Felder, R.M., Silverman, L.K.: Learning and teaching styles in engineering education. Eng. Educ. 78(7), 674–681 (1988)

    Google Scholar 

  44. 44.

    Fleming, N.: VARK—a guide to learning styles. http://vark-learn.com (1995). Accessed 27 July 2017

  45. 45.

    Fonseca, D., Conde, M.Á., García-Peñalvo, F.J.: Improving the information society skills: is knowledge accessible for all? Univ. Access Inf. Soc. 17(2), 229–245 (2018)

    Google Scholar 

  46. 46.

    Franzoni, A.L., Assar, S.: Student learning styles adaptation method based on teaching strategies and electronic media. Educ. Technol. Soc. 12(4), 15–29 (2009)

    Google Scholar 

  47. 47.

    Friend, B., Patrick, S., Schneider, C., Vander Ark, T.: What’s Possible with Personalized Learning? An Overview of Personalized Learning for Schools, Families and Communities. International Association for K-12 Online Learning, Vienna (2017)

    Google Scholar 

  48. 48.

    Gamrat, C., Zimmerman, H.T., Dudek, J., Peck, K.: Personalized workplace learning: an exploratory study on digital badging within a teacher professional development program. Br. J. Educ. Technol. 45(6), 1136–1148 (2014)

    Google Scholar 

  49. 49.

    Ghadirli, H.M., Rastgarpour, M., Hashemi, S.M., Pedram, M.M.: Effectiveness of learning style in popularity of personalized mobile intelligent tutoring system from view of learners. Indian J. Sci. Technol. 9(31), 1–8 (2016)

    Google Scholar 

  50. 50.

    Godbole, R., Burad, S.: Face expression detection using CNN. Int. J. Innov. Res. Technol. 5(12), 16–18 (2019)

    Google Scholar 

  51. 51.

    Graf, S., Liu, T.C., Kinshuk, : Analysis of learners’ navigational behaviour and their learning styles in an online course. J. Comput. Assist. Learn. 26(2), 116–131 (2010)

    Google Scholar 

  52. 52.

    Graf, S., Yang, G., Liu, T.C., Kinshuk, D.: Automatic, global and dynamic student modeling in a ubiquitous learning environment. Knowl. Manag. E-Learning Int. J. (KM&EL) 1(1), 18–35 (2009)

    Google Scholar 

  53. 53.

    Grasha, A.F., Riechmann, S.W.: A rational to developing and assessing the construct validity of a student learning styles scale instrument. J. Psychol. 87(2), 213–223 (1974)

    Google Scholar 

  54. 54.

    Guerra, J., Hosseini, R., Somyurek, S., Brusilovsky, P.: An intelligent interface for learning content: combining an open learner model and social comparison to support self-regulated learning and engagement. In: Proceedings of the 21st International Conference on Intelligent User Interfaces, pp. 152–163. ACM (2016)

  55. 55.

    Halimi, K., Seridi-Bouchelaghem, H.: Semantic web based learning styles identification for social learning environments personalization. Web Intell. 13(1), 3–29 (2015)

    Google Scholar 

  56. 56.

    Hassel, B.B.C., Hassel, E.A., Impact, P.: Teachers in the age of digital instruction. Educ. Reform Digit. Era 11, 33 (2012)

    Google Scholar 

  57. 57.

    Hewett, B.L., Martini, R.H.: Educating online writing instructors using the jungian personality types. Comput. Compos. 47, 34–58 (2018)

    Google Scholar 

  58. 58.

    Honey, P., Mumford, A.: The Manual of Learning Styles. Peter Honey, Maidenhead (1982)

    Google Scholar 

  59. 59.

    Hosseini, S., Tawil, A.R., Jahankhani, H., Yarandi, M.: Towards an ontological learners’ modelling approach for personalised e-learning. Int. J. Emerg. Technol. Learn. 8(2), 4–10 (2013)

    Google Scholar 

  60. 60.

    Hsieh, C.W., Chen, S.Y.: A cognitive style perspective to handheld devices: customization vs. personalization. Int. Rev. Res. Open Distrib. Learn. 17(1), 1–22 (2016)

    MathSciNet  Google Scholar 

  61. 61.

    Hsu, C.K., Hwang, G.J., Chang, C.K.: A personalized recommendation-based mobile learning approach to improving the reading performance of EFL students. Comput. Educ. 63, 327–336 (2013)

    Google Scholar 

  62. 62.

    Huang, E.Y., Lin, S.W., Huang, T.K.: What type of learning style leads to online participation in the mixed-mode e-learning environment? A study of software usage instruction. Comput. Educ. 58(1), 338–349 (2012)

    Google Scholar 

  63. 63.

    Huang, Y.M., Hwang, J.P., Chen, S.Y.: Matching/mismatching in web-based learning: a perspective based on cognitive styles and physiological factors. Interact. Learn. Environ. 24(6), 1198–1214 (2016)

    Google Scholar 

  64. 64.

    Huang, Z., Shi, X., Chen, Y.: Intelligent cloud learning model for online overseas Chinese education. Int. J. Emerg. Technol. Learn. 10(1), 55–59 (2015)

    Google Scholar 

  65. 65.

    Hung, L.P., Hsieh, N.C., Ho, C.L., Chen, C.L.: Building a personalized multidimensional intelligent learning system. Int. Sch. Sci. Res. Innov. 4(7), 1753–1756 (2010)

    Google Scholar 

  66. 66.

    Hung, Y.C.: The effect of teaching methods and learning style on learning program design in web-based education systems. J. Educ. Comput. Res. 47(4), 409–427 (2012)

    Google Scholar 

  67. 67.

    Hwang, G.J., Sung, H.Y., Hung, C.M., Huang, I., Tsai, C.C.: Development of a personalized educational computer game based on students’ learning styles. Educ. Technol. Res. Dev. 60(4), 623–638 (2012)

    Google Scholar 

  68. 68.

    Iatrellis, O., Kameas, A., Fitsilis, P.: EDUC8: self-evolving and personalized learning pathways utilizing semantics. In: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE (2018)

  69. 69.

    Jeong, H.Y., Hong, B.H.: A practical use of learning system using user preference in ubiquitous computing environment. Multimed. Tools Appl. 64(2), 491–504 (2013)

    Google Scholar 

  70. 70.

    Jovanovic, D., Jovanovic, S.: An adaptive e-learning system for Java programming course, based on Dokeos LE. Comput. Appl. Eng. Educ. 23(3), 337–343 (2015)

    Google Scholar 

  71. 71.

    Jovanovic, D., Milosevic, D., Zizovic, M.: INDeLER: eLearning personalization by mapping student’s learning style and preference to metadata. Int. J. Emerg. Technol. Learn. 3(4), 41–50 (2008)

    Google Scholar 

  72. 72.

    Juskeviciene, A., Jasute, E., Kurilovas, E., Mamcenko, J.: Application of 1:1 mobile learning scenarios in computer engineering education. Int. J. Eng. Educ. 32(3), 1087–1096 (2016)

    Google Scholar 

  73. 73.

    Kalinic, Z., Arsovski, S., Arsovski, Z., Rankovic, V.: The effectiveness and students’ perception of an adaptive mobile learning system based on personalized content and mobile web. New Educ. Rev. 37(3), 43–53 (2014)

    Google Scholar 

  74. 74.

    Kerkiri, T., Konetas, D., Paleologou, A.M., Mavridis, I.: Semantic web technologies anchored in learning styles as catalysts towards personalising the learning process. Int. J. Learn. Intellect. Cap. 8(2), 179–205 (2011)

    Google Scholar 

  75. 75.

    Khamparia, A., Pandey, B.: Effects of visual map embedded approach on students learning performance using Briggs-Myers learning style in word puzzle gaming course. Comput. Electr. Eng. 66, 531–540 (2018)

    Google Scholar 

  76. 76.

    Khenissi, M.A., Essalmi, F., Jemni, M., Kinshuk, Graf, S., Chen, N.S.: Relationship between learning styles and genres of games. Comput. Educ. 101, 1–14 (2016)

    Google Scholar 

  77. 77.

    Kim, K., Choi, Y.J., Kim, M., Lee, J.W., Park, D.S., Moon, N.: Teaching–learning activity modeling based on data analysis. Symmetry 7(1), 206–219 (2015)

    Google Scholar 

  78. 78.

    Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z.: E-learning personalization based on hybrid recommendation strategy and learning style identification. Comput. Educ. 56(3), 885–899 (2011)

    Google Scholar 

  79. 79.

    Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall, Englewood Cliffs, NJ (1984)

    Google Scholar 

  80. 80.

    Krátky, P., Tvarožek, J., Chudá, D.: Big five personality in online learning and games: analysis of student activity. Int. J. Hum. Cap. Inf. Technol. Prof. (IJHCITP) 7(3), 33–46 (2016)

    Google Scholar 

  81. 81.

    Kuk, K., Jovanovic, D.: Design and implementation of CoAeLearn modules for personalized game based-learning within computer architecture course. Int. J. Eng. Educ. 29(3), 620–633 (2013)

    Google Scholar 

  82. 82.

    Kumar, M.S., Prabhu, J.: Recent development in big data analytics: research perspective. In: Applications of Security, Mobile, Analytic, and Cloud (SMAC) Technologies for Effective Information Processing and Management, pp. 233–257. IGI Global (2018)

  83. 83.

    Landis, J.R., Koch, G.G.: An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33, 363–374 (1977)

    MATH  Google Scholar 

  84. 84.

    Latham, A., Crockett, K., McLean, D.: An adaptation algorithm for an intelligent natural language tutoring system. Comput. Educ. 71, 97–110 (2014)

    Google Scholar 

  85. 85.

    Lau, W.W., Yuen, A.H., Chan, A.: Variable-centered and person-centered approaches to studying the VARK learning style inventory. In: Ma, W., Yuen, A., Park, J., Lau, W., Deng, L. (eds.) New Media, Knowledge Practices and Multiliteracies, pp. 207–216. Springer, Singapore (2015)

    Google Scholar 

  86. 86.

    Levin, S., Fulginiti, A.: Teaching note—developing an online blended learning course on psychiatric diagnosis. J. Soc. Work Educ. 53(3), 560–567 (2017)

    Google Scholar 

  87. 87.

    Li, D., Xu, X., Li, Y., Wang, J.: Personalised learning resources based on learning style. World Trans. Eng. Technol. Educ. 14(1), 107–112 (2016)

    Google Scholar 

  88. 88.

    Limongelli, C., Sciarrone, F., Vaste, G.: Personalized e-learning in Moodle: the Moodle_LS System. J. E-Learning Knowl. Soc. 7(1), 49–58 (2011)

    Google Scholar 

  89. 89.

    Limongelli, C., Sciarrone, F., Temperini, M., Vaste, G.: Adaptive learning with the LS-plan system: a field evaluation. IEEE Trans. Learn. Technol. 2(3), 203–215 (2009)

    Google Scholar 

  90. 90.

    Lin, C.F., Yeh, Y.C., Hung, Y.H., Chang, R.I.: Data mining for providing a personalized learning path in creativity: an application of decision trees. Comput. Educ. 68, 199–210 (2013)

    Google Scholar 

  91. 91.

    Lin, H.C.K., Wu, C.H., Hsueh, Y.P.: The influence of using affective tutoring system in accounting remedial instruction on learning performance and usability. Comput. Hum. Behav. 41, 514–522 (2014)

    Google Scholar 

  92. 92.

    Lin, J.: Optimization of personalized learning pathways based on competencies and outcome. In: 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT), pp. 49–51. IEEE (2016)

  93. 93.

    Long, Y., Aleven, V.: Enhancing learning outcomes through self-regulated learning support with an open learner model. User Model. User Adapt. Interact. 27(1), 55–88 (2017)

    Google Scholar 

  94. 94.

    Lu, Y., Chen, C., Chen, P., Chen, X., Zhuang, Z.: Smart learning partner: an interactive robot for education. In: International Conference on Artificial Intelligence in Education, pp. 447–451. Springer, Cham (2018)

  95. 95.

    Mangione, G.R., Orciuoli, F., Pierri, A., Salerno, S.: Competence management in e-Learning systems: a possible approach. J. e-Learn. Knowl. Soc. 5(3), 69–77 (2009)

    Google Scholar 

  96. 96.

    Mao, Y., Yang, S., Li, Z., Li, Y.: Personality trait and group emotion contagion based crowd simulation for emergency evacuation. Multimed. Tools Appl. 7, 1–28 (2018)

    Google Scholar 

  97. 97.

    Martínez-Villaseñor, M.D.L., González-Mendoza, M., Danvila Del Valle, I.: Enrichment of learner profile with ubiquitous user model interoperability. Comput. Sist. 18(2), 359–374 (2014)

    Google Scholar 

  98. 98.

    Mašić, A., Polz, E., Bećirović, S.: The relationship between learning styles, GPA, school level and gender. Eur. Res. 11(1), 51–60 (2020)

    Google Scholar 

  99. 99.

    Medina-Medina, N., Molina-Ortiz, F., García-Cabrera, L.: Adaptation and user modeling in hypermedia learning environments using the SEM-HP model and the JSEM-HP tool. Knowl. Inf. Syst. 29(3), 629–656 (2011)

    Google Scholar 

  100. 100.

    Melzer, P., Schoop, M.: The Effects of personalised negotiation training on learning and performance in electronic negotiations. Group Decis. Negot. 25(6), 1189–1210 (2016)

    Google Scholar 

  101. 101.

    Méndez, N.D.D., Morales, V.T., Vicari, R.M.: Learning object metadata mapping with learning styles as a strategy for improving usability of educational resource repositories. IEEE Rev. Iberoam. Tecnol. Aprendiz. 11(2), 101–106 (2016)

    Google Scholar 

  102. 102.

    Millán, E., Loboda, T., Pérez-de-la-Cruz, J.L.: Bayesian networks for student model engineering. Comput. Educ. 55(4), 1663–1683 (2010)

    Google Scholar 

  103. 103.

    Moridis, C.N., Economides, A.A.: Mood recognition during online self-assessment tests. IEEE Trans. Learn. Technol. 2(1), 50–61 (2009)

    Google Scholar 

  104. 104.

    Muntean, C.H., Muntean, G.M.: Open corpus architecture for personalised ubiquitous e-learning. Pers. Ubiquit. Comput. 13(3), 197–205 (2009)

    Google Scholar 

  105. 105.

    Muruganandam, S., Srinivasan, N.: Appraisal of Felder-Silverman learning style model with discrete data sets. Indian J. Sci. Technol. 9(10), 1–4 (2016)

    Google Scholar 

  106. 106.

    Myers, I.B., Myers, P.B.: Gifts Differing: Understanding Personality Type. Davies-Black Publishing, Mountain View, CA (1995)

    Google Scholar 

  107. 107.

    Nainwal, M., Joshi, B., Bajwa, S., Prasad, M., Samadhiya, D.: Ontology engineering: semantic web technology in aspect of software engineering. In: 3rd International Conference on Computer Technology and Development (ICCTD 2011). ASME Press (2011)

  108. 108.

    Nakic, J., Granic, A., Glavinic, V.: Anatomy of student models in adaptive learning systems: a systematic literature review of individual differences from 2001 to 2013. J. Educ. Comput. Res. 51(4), 459–489 (2015)

    Google Scholar 

  109. 109.

    Narciss, S., Sosnovsky, S., Schnaubert, L., Andrès, E., Eichelmann, A., Goguadze, G., Melis, E.: Exploring feedback and student characteristics relevant for personalizing feedback strategies. Comput. Educ. 71, 56–76 (2014)

    Google Scholar 

  110. 110.

    Parashar, R., Hulke, S., Pakhare, A.: Learning styles for medical students: role of VARK modality [Response to Letter]. Adv. Med. Educ. Pract. 10, 401 (2019)

    Google Scholar 

  111. 111.

    Park, K., Ji, H., Lim, H.: Development of a learner proiling system using multidimensional characteristics analysis. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/652623

    Article  Google Scholar 

  112. 112.

    Peter, S.E., Bacon, E., Dastbaz, M.: Adaptable, personalised e-learning incorporating learning styles. Campus Wide Inf. Syst. 27(2), 91–100 (2010)

    Google Scholar 

  113. 113.

    Pukkhem, N., Vatanawood, W.: Personalised learning object based on multi-agent model and learners’ learning styles. Maejo Int. J. Sci. Technol. 5(3), 292–311 (2011)

    Google Scholar 

  114. 114.

    Qin, J., Zheng, Q., Li, H.: A study of learner-oriented negative emotion compensation in e-learning. Educ. Technol. Soc. 17(4), 420–431 (2014)

    Google Scholar 

  115. 115.

    Radenković, B., Despotović, M., Bogdanović, Z., Barać, D.: Creating adaptive environment for e-learning courses. J. Inf. Organ. Sci. 33(1), 179–189 (2009)

    Google Scholar 

  116. 116.

    Rajendran, R., Iyer, S., Murthy, S.: Personalized affective feedback to address students frustration in ITS. IEEE Trans. Learn. Technol. 12, 87–97 (2018)

    Google Scholar 

  117. 117.

    Rajper, S., Shaikh, N.A., Shaikh, Z.A., Mallah, G.A.: Automatic detection of learning styles on learning management systems using data mining technique. Indian J. Sci. Technol. 9(15), 1–5 (2016)

    Google Scholar 

  118. 118.

    Rani, M., Nayak, R., Vyas, O.P.: An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowl. Based Syst. 90, 33–48 (2015)

    Google Scholar 

  119. 119.

    Rastegarmoghadam, M., Ziarati, K.: Improved modeling of intelligent tutoring systems using ant colony optimization. Educ. Inf. Technol. 22(3), 1067–1087 (2017)

    Google Scholar 

  120. 120.

    Ray, A., Chakrabarti, A.: Design and implementation of affective e-learning strategy based on facial emotion recognition. In: Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012), pp. 613–622. Springer, Berlin (2012)

  121. 121.

    Reategui, E., Boff, E., Campbell, J.A.: Personalization in an interactive learning environment through a virtual character. Comput. Educ. 51(2), 530–544 (2008)

    Google Scholar 

  122. 122.

    Rodrigues, J., João, P., Vaidya, B.: EduTutor: an intelligent tutor system for a learning management system. Int. J. Distance Educ. Technol. 8(4), 66–80 (2010)

    Google Scholar 

  123. 123.

    Sabitha, A.S., Mehrotra, D., Bansal, A.: Delivery of learning knowledge objects using fuzzy clustering. Educ. Inf. Technol. 21(5), 1329–1349 (2016)

    Google Scholar 

  124. 124.

    Saneiro, M., Santos, O.C., Salmeron-Majadas, S., Boticario, J.G.: Towards emotion detection in educational scenarios from facial expressions and body movements through multimodal approaches. Sci. World J. 2014, article ID 484873 (2014)

    Google Scholar 

  125. 125.

    Sani, S.M., Aris, T.N.M., Mustapha, N., Sulaiman, M.N.: A fuzzy logic approach to manage uncertainty and improve the prediction accuracy in student model design. J. Theor. Appl. Inf. Technol. 82(3), 366–377 (2015)

    Google Scholar 

  126. 126.

    Sato, T.: The S-P Chart and The Caution Index, NEC Educational Information Bulletin 80–1, C&C Systems Research Laboratories. Nippon Electic Co., Ltd., Tokyo (1980)

    Google Scholar 

  127. 127.

    Sawyer, R., Smith, A., Rowe, J., Azevedo, R., Lester, J.: Enhancing student models in game-based learning with facial expression recognition. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 192–201. ACM (2017)

  128. 128.

    Schiaffino, S., Garcia, P., Amandi, A.: eTeacher: providing personalized assistance to e-learning students. Comput. Educ. 51(4), 1744–1754 (2008)

    Google Scholar 

  129. 129.

    Seyal, A.H., Rahman, M.N.A.: Understanding learning styles, attitudes and intentions in using e-learning system: evidence from Brunei. World J. Educ. 5(3), 61 (2015)

    Google Scholar 

  130. 130.

    Shaw, C., Larson, R., Sibdari, S.: An asynchronous, personalized learning platform eGuided learning pathways. In: Sixth International Conference of MIT’s Learning International Networks Consortium (LINC), June 16 e 19, Cambridge, MA (2013)

  131. 131.

    Shaw, R.S.: The learning performance of different knowledge map construction methods and learning styles moderation for programming language learning. J. Educ. Comput. Res. 56, 1407–1429 (2019)

    Google Scholar 

  132. 132.

    Shen, L., Wang, M., Shen, R.: Affective e-learning: using “emotional” data to improve learning in pervasive learning environment. Educ. Technol. Soc. 12(2), 176–189 (2009)

    Google Scholar 

  133. 133.

    Siddique, A., Durrani, Q.S., Naqvi, H.A.: Developing adaptive e-learning environment using cognitive and noncognitive parameters. J. Educ. Comput. Res. 57, 811–845 (2019)

    Google Scholar 

  134. 134.

    Smith, R.G., Nolan, B.: Emotional facial expressions in synthesised sign language avatars: a manual evaluation. Univ. Access Inf. Soc. 15(4), 567–576 (2016)

    Google Scholar 

  135. 135.

    Soloman, B.A., Felder, R.M.: Index of Learning Styles Questionnaire. NC State University, Raleigh (2005)

    Google Scholar 

  136. 136.

    Stefanovic, N., Stefanovic, D., Arsovic, B.: Adaptivity in e-learning LMS platform. Metal. Int. 18(3), 156–162 (2013)

    Google Scholar 

  137. 137.

    Sumadyo, M., Santoso, H.B., Sensuse, D.I.: Metacognitive components in smart learning environment. J. Phys. Conf. Ser. 978(1), 012025 (2018)

    Google Scholar 

  138. 138.

    Sun, Y., Li, Z.P., Kuang, T.F.: Research on intelligent tutoring systems based on multi-agent and knowledge maps. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 39, 56–59 (2011)

    Google Scholar 

  139. 139.

    Sunkara, V.M., Kurra, R.R.: A learner-centric personalized and adaptive e-learning framework for higher education. Int. J. Adv. Res. Comput. Sci. 8(5), 1–6 (2017)

    Google Scholar 

  140. 140.

    Sweta, S., Lal, K.: Adaptive and personalized intelligent learning interface in e-learning system. Int. J. Appl. Eng. Res. 10(21), 42488–42492 (2015)

    Google Scholar 

  141. 141.

    Sweta, S., Lal, K.: Personalized adaptive learner model in e-learning system using FCM and fuzzy inference system. Int. J. Fuzzy Syst. 19(4), 1249–1260 (2017)

    Google Scholar 

  142. 142.

    Talhi, S., Behaz, A.: Using learning styles MBTI model to adapt learning. In: Proceedings of the International Conference on Computing for Engineering and Sciences, pp. 92–95 (2017)

  143. 143.

    Taylor, R., Gebre, A.: Teacher–student relationships and personalized learning: Implications of personal and contextual variables. In: Murphy, M., Redding, S., Twyman, J. (eds.) Handbook on Personalized Learning for States, Districts, and Schools, pp. 205–220. Temple University, Center on Innovations in Learning, Philadelphia, PA (2016)

    Google Scholar 

  144. 144.

    Thanyaphongphat, J., Panjaburee, P.: Effects of online learning with matching learning styles and preferred digital media types on university students’ perceptions. In: 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 552–555. IEEE (2017)

  145. 145.

    Tlili, A., Denden, M., Essalmi, F., Jemni, M., Chen, N.S., Huang, R.: Does providing a personalized educational game based on personality matter? A case study. IEEE Access 7, 119566–119575 (2019)

    Google Scholar 

  146. 146.

    Tortorella, R.A., Graf, S.: Considering learning styles and context-awareness for mobile adaptive learning. Educ. Inf. Technol. 22(1), 297–315 (2017)

    Google Scholar 

  147. 147.

    Truong, H.M.: Integrating learning styles and adaptive e-learning system: current developments, problems and opportunities. Comput. Hum. Behav. 55, 1185–1193 (2016)

    Google Scholar 

  148. 148.

    US Department of Education: Office of Educational Technology: National Education Technology Plan Update. US Department of Education, Washington (2017)

    Google Scholar 

  149. 149.

    Vesin, B., Klašnja-Milićević, A., Ivanović, M., Budimac, Z.: Applying recommender systems and adaptive hypermedia for e-Learning personalizatio. Comput. Inform. 32(3), 629–659 (2013)

    Google Scholar 

  150. 150.

    Wanapu, S., Fung, C.C., Kerdprasop, N., Chamnongsri, N., Niwattanakul, S.: An investigation on the correlation of learner styles and learning objects characteristics in a proposed learning objects management model (LOMM). Educ. Inf. Technol. 21(5), 1113–1134 (2016)

    Google Scholar 

  151. 151.

    Wang, T.I., Wang, K.T., Huang, Y.M.: Using a style-based ant colony system for adaptive learning. Expert Syst. Appl. 34(4), 2449–2464 (2008)

    Google Scholar 

  152. 152.

    Weibelzahl, S:. Evaluation of adaptive systems. In: International Conference on User Modeling, pp. 292–294. Springer, Berlin (2001)

  153. 153.

    Wu, C.H., Tzeng, Y.L., Huang, Y.M.: Understanding the relationship between physiological signals and digital game-based learning outcome. J. Comput. Educ. 1(1), 81–97 (2014)

    Google Scholar 

  154. 154.

    Wu, C.H., Tzeng, Y.L., Kuo, B.C., Tzeng, G.H.: Integration of affective computing techniques and soft computing for developing a human affective recognition system for U-learning systems. Int. J. Mob. Learn. Organ. 8(1), 50–66 (2014)

    Google Scholar 

  155. 155.

    Wu, G.F., Li, S.Q., Tang, H.R.: Design and application of remote-learner’s affective testing in human–computer interaction. Open Cybern. Syst. J. 9, 1762–1768 (2015)

    Google Scholar 

  156. 156.

    Xie, H., Zou, D., Zhang, R., Wang, M., Kwan, R.: Personalized word learning for university students: a profile-based method for e-learning systems. J. Comput. High. Educ. 31, 1–17 (2019)

    Google Scholar 

  157. 157.

    Yang, J., Huang, Z.X., Gao, Y.X., Liu, H.T.: Dynamic learning style prediction method based on a pattern recognition technique. IEEE Trans. Learn. Technol. 7(2), 165–177 (2014)

    Google Scholar 

  158. 158.

    Yang, T.C., Hwang, G.J., Yang, S.J.H.: Development of an adaptive learning system with multiple perspectives based on students’ learning styles and cognitive styles. Educ. Technol. Soc. 16(4), 185–200 (2013)

    Google Scholar 

  159. 159.

    Yarandi, M., Jahankhani, H., Tawil, A.R.H.: A personalized adaptive e-learning approach based on semantic web technology. Webology 10(2), 110 (2013)

    Google Scholar 

  160. 160.

    Yih, J.M., Lin, Y.H.: Concept structure based on response pattern detection of SP chart with application in algebra learning. Learning 100(8), 847–856 (2010)

    Google Scholar 

  161. 161.

    Yung, C.P., Tien, D.T.K., Al-Obaidi, A.S.M.: Delivering holistic education using engineering curriculum through personalized learning, pedagogy, technology and space. J. Eng. Sci. Technol. 11, 27–45 (2016)

    Google Scholar 

  162. 162.

    Zeng, R., Wang, Y.Y.: Research of personalized Web-based intelligent collaborative learning. J. Softw. 7(4), 904–912 (2012)

    Google Scholar 

  163. 163.

    Zhang, H.: Accommodating different learning styles in the teaching of economics: with emphasis on Fleming and Mills’s sensory-based learning style typology. Appl. Econ. Finance 4(1), 72–83 (2016)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financial support (MOST 108-2511-H-008-011-MY3 and MOST 108-2629-H-008-001-MY3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sherry Y. Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S.Y., Wang, JH. Individual differences and personalized learning: a review and appraisal. Univ Access Inf Soc (2020). https://doi.org/10.1007/s10209-020-00753-4

Download citation