Skip to main content
Log in

Agile development of multiplatform educational video games using a Domain-Specific Language

  • Long Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript


Educational video games are becoming an increasingly popular alternative in the academic field. However, video game development is a very complex task that requires programming skills and knowledge of multiple technologies, as well as lengthy and costly processes. This has hindered the adoption of educational video games in real settings, and therefore the global acceptance of educational games as a viable approach. In contrast, teachers with limited time and resources are a key factor for educational video game adoption. If enthusiastic teachers can be empowered to create games to engage their students, and if these games were ready to be played in a variety of devices and platforms, we could bring a new generation of low-cost games for immediate deployment in the classroom, using the students’ own devices. We aim to achieve this goal by creating a Domain-Specific Language for the development of multiplatform educational video games without requiring any programming skills and with a reduced time investment. This approach should reduce the barriers for using educational video games in the classroom and ease the way towards generalised adoption of educational video games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Fundación Telefónica: La Sociedad de la Información en España 2014 (2015)

  2. Ozcelik, E., Cagiltay, N.E., Ozcelik, N.S.: The effect of uncertainty on learning in game-like environments. Comput. Educ. 67, 12–20 (2013).

    Article  Google Scholar 

  3. Papastergiou, M.: Exploring the potential of computer and video games for health and physical education: a literature review. Comput. Educ. 53, 603–622 (2009).

    Article  Google Scholar 

  4. Hwang, G.J., Wu, P.H.: Advancements and trends in digital game-based learning research: a review of publications in selected journals from 2001 to 2010. Br. J. Educ. Technol. 43, 6–10 (2012).

    Article  Google Scholar 

  5. Granic, I., Lobel, A., Engels, R.C.M.E.: The benefits of playing video games. Am. Psychol. 69, 66–78 (2014).

    Article  Google Scholar 

  6. Yuan, B., Folmer, E., Harris, F.C.: Game accessibility: a survey. Univ. Access Inf. Soc. 10, 81–100 (2011).

    Article  Google Scholar 

  7. Connolly, T.M., Boyle, E.A., MacArthur, E., Hainey, T., Boyle, J.M.: A systematic literature review of empirical evidence on computer games and serious games. Comput. Educ. 59, 661–686 (2012).

    Article  Google Scholar 

  8. Pourabdollahian, B., Taisch, M., Kerga, E.: Serious games in manufacturing education: evaluation of. Procedia Comput. Sci. 15, 256–265 (2012).

    Article  Google Scholar 

  9. Moshirnia, A.: The educational potential of modified video games. Issues Inf. Sci. Inf. Technol. 4, 511–521 (2007)

    Google Scholar 

  10. Tüzün, H., Yılmaz-Soylu, M., Karakuş, T., İnal, Y., Kızılkaya, G.: The effects of computer games on primary school students’ achievement and motivation in geography learning. Comput. Educ. 52, 68–77 (2009).

    Article  Google Scholar 

  11. Torrente, J., Blanco, Á., Marchiori, E.J., Moreno-ger, P., Fernández-Manjón, B., Del Blanco, Á.: Introducing educational games in the learning process. IEEE Education Engineering EDUCON 2010 Conference, vol. 127, pp. 1121–1126 (2010).

  12. Gee, J.P.: Good video games and good learning. Phi Kappa Phi Forum 85, 33 (2005)

    Google Scholar 

  13. Wattanatchariya, K., Chuchuaikam, S., Dejdumrong, N.: An educational game for learning wind and gravity theory on iOS: drop donuts. In: 2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 387–392. IEEE, Nakhon Pathom (2011)

  14. Alonso Secades, V., Arranz, O.: Big data and elearning: a binomial to the future of the knowledge society. Int. J. Interact. Multimed. Artif. Intell. 3, 29 (2016).

    Google Scholar 

  15. e-UCM research group (Complutense University of Madrid): eAdventure.

  16. Lifelong Kindergarten: Scratch.

  17. Kordaki, M.: Diverse categories of programming learning activities could be performed within scratch. In: 4th World Conference on Educational Sciences (WCES-2012) 02-05, pp. 1162–1166. Barcelona (2012)

  18. Alice Team: Alice.

  19. Johnsgard, K., McDonald, J.: Using alice in overview courses to improve success rates in programming I. In: IEEE 21st Conference on Software Engineering Education and Training, 2008. CSEET’08, pp. 129–136. IEEE, Charleston (2008)

  20. Afreen, R.: Bring your own device (BYOD) in higher education: opportunities and challenges. Int. J. Emerg. Trends Technol. Comput. Sci. 3, 233–236 (2014)

    Google Scholar 

  21. Lavín-Mera, P., Torrente, J., Moreno-Ger, P., Vallejo Pinto, J.A., Fernández-Manjón, B.: Mobile game development for multiple devices in education. In: International Journal of Emerging Technologies in Learning (iJET), pp. 1–8. Tokyo (2007)

  22. Deursen, A.Van, Klint, P., Visser, J.: Domain-Specific Languages: an annotated bibliography. ACM Sigplan Not. 35, 26–36 (2000)

    Article  Google Scholar 

  23. Moreno-Ger, P., Burgos, D., Martínez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B.: Educational game design for online education. Comput. Hum. Behav. 24, 2530–2540 (2008).

    Article  Google Scholar 

  24. Michael, D.R., Chen, S.L.: Serious Games: Games that Educate, Train, and Inform. Muska & Lipman/Premier-Trade, New York (2005)

    Google Scholar 

  25. Marchiori, E.J., Torrente, J., Del Blanco, Á., Moreno-Ger, P., Sancho, P., Fernández-Manjón, B.: A narrative metaphor to facilitate educational game authoring. Comput. Educ. 58, 590–599 (2012).

    Article  Google Scholar 

  26. Kam, M., Rudraraju, V., Tewari, A., Canny, J.: Mobile gaming with children in rural India: contextual factors in the use of game design patterns. In: Proceedings of the 3rd Digital Games Research Association International Conference (DiGRA’07), pp. 24–28 (2007)

  27. González García, C., Espada, J.P., G-Bustelo, B.C.P., Lovelle, J.M.C.: Swift vs objective-C: a new programming language. Int. J. Interact. Multimed. Artif. Intell. 3, 74–81 (2015).

    Google Scholar 

  28. Torrente, J., Borro-Escribano, B., Freire, M., Del Blanco, Á., Marchiori, E.J., Martínez-Ortiz, I., Moreno-Ger, P., Fernández-Manjón, B.: Development of game-like simulations for procedural knowledge in healthcare education. IEEE Trans. Learn. Technol. 7, 69–82 (2014).

    Article  Google Scholar 

  29. Federation of American Scientists: Harnessing the power of video games for learning. (2005)

  30. Griffiths, M.: The educational benefits of videogames. Educ. Health 20, 47–51 (2002)

    Google Scholar 

  31. Gee, J.P.: What video games have to teach us about learning and literacy. Comput. Entertain. 1, 20 (2003).

    Article  Google Scholar 

  32. Brown, A.L.: The advancement of learning. Educ. Res. 23, 4–12 (1994)

    Article  Google Scholar 

  33. Graafland, M., Schraagen, J.M., Schijven, M.P.: Systematic review of serious games for medical education and surgical skills training. Br. J. Surg. 99, 1322–1330 (2012).

    Article  Google Scholar 

  34. Akl, E.A., Sackett, K.M., Erdley, W.S., Mustafa, R.A., Fiander, M., Gabriel, C., Schuenemann, H.: Educational games for health professionals. Cochrane Database Syst. Rev. (2013).

    Google Scholar 

  35. Kanthan, R., Senger, J.L.: The impact of specially designed digital games-based learning in undergraduate pathology and medical education. Arch. Pathol. Lab. Med. 135, 135–142 (2011).

    Google Scholar 

  36. Boeker, M., Andel, P., Vach, W., Frankenschmidt, A.: Game-based e-learning is more effective than a conventional instructional method: a randomized controlled trial with third-year medical students. PLoS ONE 8, 1–11 (2013).

    Google Scholar 

  37. Cheng, M.T., Su, T., Huang, W.Y., Chen, J.H.: An educational game for learning human immunology: what do students learn and how do they perceive? Br. J. Educ. Technol. 45, 820–833 (2013).

    Article  Google Scholar 

  38. Heron, M., Hanson, V.L., Ricketts, I.W.: Accessibility support for older adults with the ACCESS framework. Int. J. Hum. Comput. Interact. 29, 702–716 (2013).

    Article  Google Scholar 

  39. Westin, T., Bierre, K., Gramenos, D., Hinn, M.: Advances in game accessibility from 2005 to 2010. In: Proceedings of the 6th International Conference on Universal Access in Human–Computer Interaction: Users Diversity—Volume Part II, pp. 400–409. Springer, Berlin, Heidelberg (2011)

  40. Cano, S., Alghazzawi, D.M., Arteaga, J.M., Fardoun, H.M., Collazos, C.A., Amador, V.B.: Applying the information search process model to analyze aspects in the design of serious games for children with hearing impairment. Univ. Access Inf. Soc. 17, 83–95 (2018).

    Article  Google Scholar 

  41. Kent, S.: Model driven engineering. Comput. Comput. Soc. 2335, 286–298 (2002)

    MATH  Google Scholar 

  42. Dijkstra, E.W.: The humble programmer. Commun. ACM 15, 859–866 (1972)

    Article  Google Scholar 

  43. Palacios-González, E., Fernández-Fernández, H., García-Díaz, V., G-Bustelo, B.C.P., Lovelle, J.M.C., Martínez, O.S.: General purpose MDE tools. Int. J. Interact. Multimed. Artif. Intell. 1, 72–75 (2008)

    Google Scholar 

  44. Schön, E.M., Escalona, M., Thomaschewski, J.: Agile values and their implementation in practice. Int. J. Interact. Multimed. Artif. Intell. 3, 61 (2015).

    Google Scholar 

  45. García-Díaz, V., Fernández-Fernández, H., Palacios-González, E., G-Bustelo, B.C.P., Sanjuán-Martínez, O., Lovelle, J.M.C., Talisman, M.D.E.: Mixing MDE principles. J. Syst. Softw. 83, 1179–1191 (2010).

    Article  Google Scholar 

  46. García-Díaz, V., Tolosa, J.B., G-Bustelo, B.C.P., Palacios-González, E., Sanjuán-Martínez, O., Crespo, R.G.: TALISMAN MDE framework: an architecture for intelligent model-driven engineering. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, pp. 299–306. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  47. Fabra, J., De Castro, V., Álvarez, P., Marcos, E.: Automatic execution of business process models: exploiting the benefits of Model-driven Engineering approaches. J. Syst. Softw. 85, 607–625 (2012).

    Article  Google Scholar 

  48. González García, C., García-Bustelo, C.P., Espada, J.P., Cueva-Fernandez, G.: Midgar: Generation of heterogeneous objects interconnecting applications. A domain specific language proposal for internet of things scenarios. Comput. Netw. 64, 143–158 (2014).

    Article  Google Scholar 

  49. González García, C., Espada, J.P., Valdez, E.R.N., García-Díaz, V.: Midgar: Domain-Specific Language to generate smart objects for an internet of things platform. In: 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 352–357. IEEE, Birmingham (2014)

  50. Selic, B.: MDA manifestations. Eur. J. Inform. Prof. 9, 12–16 (2008)

    Google Scholar 

  51. Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., Reggio, G.: Relevance, benefits, and problems of software modelling and model driven techniques—a survey in the Italian industry. J. Syst. Softw. 86, 2110–2126 (2013).

    Article  Google Scholar 

  52. van Deursen, A., Klint, P.: Little languages: little maintenance? J. Softw. Maint. 10, 75–92 (1998).

    Article  Google Scholar 

  53. Hästbacka, D., Vepsäläinen, T., Kuikka, S.: Model-driven development of industrial process control applications. J. Syst. Softw. 84, 1100–1113 (2011).

    Article  Google Scholar 

  54. Deursen, A. Van: Domain-Specific Languages versus object-oriented frameworks: a financial engineering case study. Smalltalk Java Ind. Acad., pp. 35–39 (1997)

  55. García-Díaz, V., Pascual-Espada, J., G-Bustelo, C.P., Cueva-Lovelle, J.M.: Towards a standard-based domain-specific platform to solve machine learning-based problems. Int. J. Interact. Multimed. Artif. Intell. 3, 6 (2015).

    Google Scholar 

  56. Moreno-Ger, P., Martínez-Ortiz, I., Fernández-Manjón, B.: The <E-Game> project: facilitating the development of educational adventure games. In: International Association for Development of the Information Society (IADIS) Cognition and Exploratory Learning in Digital Age (CELDA), pp. 353–358. Porto (2005)

  57. Lavín-Mera, P., Moreno-Ger, P., Fernández-Manjón, B.: Development of educational videogames in m-learning contexts. In: 2008 Second IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, pp. 44–51 (2008).

  58. Serrano, A., Marchiori, E.J., del Blanco, A., Torrente, J., Fernandez-Manjon, B.: A framework to improve evaluation in educational games. In: Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), pp. 1–8. IEEE, Marrakech (2012)

  59. YoYoGames: GameMaker Studio,

  60. Baytak, A., Land, S.M.: A case study of educational game design by kids and for kids. Procedia Soc. Behav. Sci. 2, 5242–5246 (2010).

    Article  Google Scholar 

  61. Duggan, M.: Making a GameSalad for Teens. Cengage Learning PTR, Chilton (2013)

    Google Scholar 

  62. Roy, K., Rousse, W.C., DeMeritt, D.B.: Comparing the mobile novice programming environments: app inventor for android vs. GameSalad. In: 2012 Frontiers in Education Conference Proceedings, pp. 1–6 (2012).

  63. Unity Technologies: Unity,

  64. Mattingly, W.A., Chang, D., Paris, R., Smith, N., Blevins, J., Ouyang, M.: Robot design using unity for computer games and robotic simulations. In: 2012 17th International Conference on Computer Games, pp. 56–59 (2012).

  65. Núñez-Valdez, E.R., Sanjuán-Martínez, O., G-Bustelo, B.C.P., Lovelle, J.M.C., Infante-Hernandez, G.: Gade4all: developing multi-platform videogames based on domain specific languages and model driven engineering. Int. J. Interact. Multimed. Artif. Intell. 2, 33–42 (2013)

    Google Scholar 

  66. Núñez-Valdez, E.R., García-Díaz, V., Lovelle, J.M.C., Achaerandio, Y.S., González-Crespo, R.: A model-driven approach to generate and deploy videogames on multiple platforms. J. Ambient Intell. Humaniz. Comput. 8, 435–447 (2017).

    Article  Google Scholar 

  67. Eclipse: Ecore.

Download references


This work was performed by the ‘Ingeniería Dirigida por Modelos MDE-RG’ research group at the University of Oviedo under Contract No. MITC-11-TSI-090302-2011-11 of the research project Gade4all. The project is co-financed by the Ministry of Industry, Tourism, and Commerce under its National Plan for Scientific Research, Development and Technological Innovation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Cristian González García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González García, C., Núñez-Valdez, E.R., Moreno-Ger, P. et al. Agile development of multiplatform educational video games using a Domain-Specific Language. Univ Access Inf Soc 18, 599–614 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: