Abstract
Nowadays, teleoperation systems are increasingly used for the training of specific skills to carry out complex tasks in dangerous environments. One of the challenges of these systems is to ensure that the time it takes for users to acquire these skills is as short as possible. For this, the user interface must be intuitive and easy to use. This document describes the design and evaluation of a graphical user interface so that a non-expert user could use a teleoperated system intuitively and without excessive training time. To achieve our goal, we use a user-centered design process model. To evaluate the interface, we use our own methodology and the results allow improving its usability.
This is a preview of subscription content, access via your institution.




References
Fonseca, D., Conde, M.A., GarcĂa-Peñalvo, F.J.: Improving the information society skills: is knowledge accessible for all? Univ. Access Inf. Soc. 17(2), 229–245 (2018). https://doi.org/10.1007/s10209-017-0548-6
Collins, A., Brown, J.S., Newman, S.E.: Cognitive apprenticeship: teaching the crafts of reading, writing, and mathematics. Knowing Learn. Instr.: Essays Honor Robert Glaser 18, 32–42 (1989)
Fitts, P.M.: Perceptual-motor skill learning. Categ. Hum. Learn. 47, 381–391 (1964)
Merians, A.S., Fluet, G.G., Qiu, Q., Saleh, S., Lafond, I., Adamovich, S.V.: Integrated arm and hand training using adaptive robotics and virtual reality simulations. In: Proceedings of the 2010 International Conference on Disability, Virtual Reality and Associated Technology, Maia, Portugal, pp. 213–222 (2010)
Reger, G.M., Gahm, G.A., Rizzo, A.A., Swanson, R.A., Duma, S.: Soldier evaluation of the virtual reality Iraq. Telemed. e-Health J. 15, 100–103 (2009)
Kunkler, K.: The role of medical simulation: an overview. Int. J. Med. Robot. Comput. Assist. Surg. 2, 203–210 (2006)
Youngblood, P.L., Srivastava, S., Curet, M., Heinrichs, W.L., Dev, P., Wren, S.M.: Comparison of training on two laparoscopic simulators and assessment of skills transfer to surgical performance. J. Am. Coll. Surg. 200, 546–551 (2005)
Sturm, L., Windsor, J.A., Cosman, P.H., et al.: A systematic review of skills transfer after surgical simulation training. Ann. Surg. 248, 166–179 (2008)
Moniz, A.B., Krings, B.J.: Robots working with humans or humans working with robots? Searching for social dimensions in new human–robot interaction in industry. Societies 6(3), 23 (2016)
Seymour, N.E., Gallagher, A.G., Roman, S.A., O’brien, M.K., Bansal, V.K., Andersen, D.K., Satava, R.M.: Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann. Surg. 236(4), 458 (2002)
Dawson, D.L., Meyer, J., Lee, E.S., Pevec, W.C.: Training with simulation improves residents’ endovascular procedure skills. J. Vasc. Surg. 45(1), 149–154 (2007)
Vertut, J., Coiffet, P.: Teleoperation and Robotics: Applications and Technology, vol. 3B (1985)
Woods, D.D., Tittle, J., Feil, M., Roesler, A.: Envisioning human–robot coordination in future operations. IEEE Trans. Syst. Man Cybern. Part C 34(2), 210–218 (2004)
Son, H.I., Franchi, A., Chuang, L.L., Kim, J., Bulthoff, H.H., Giordano, P.R.: Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots. IEEE Trans. Cybern. 43(2), 597–609 (2013)
Sitti, M., Hashimoto, H.: Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments. IEEE/ASME Trans. Mechatron. 8(2), 287–298 (2003)
Lee, S., Kim, G.J.: Effects of haptic feedback, stereoscopy, and image resolution on performance and presence in remote navigation. Int. J. Hum Comput Stud. 66(10), 701–717 (2008)
Sallnäs, E.L., Zhai, S.: Collaboration meets Fitts’ Law: passing virtual objects with and without haptic force feedback. In: Proceedings of IFIP Conference on Human-Computer Interaction, Zurich, Switzerland, pp. 97–104 (2003)
Weiss, A., Igelsböck, J., Pierro, P., Buchner, R., Balaguer, C., Tscheligi, M.: User perception of usability aspects in indirect HRI—a chain of translations. In: Proceedings of the 19th International Symposium in Robot and Human Interactive Communication. Viareggio, Italy, pp. 539–545 (2010). https://doi.org/10.1109/ROMAN.2010.5598732
Song, T.H., Park, J.H., Chung, S.M., Hong, S.H., Kwon, K.H., Lee S., Jeon, J.W.: A study on usability of human–robot interaction using a mobile computer and a human interface device. In: Proceedings of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services. New York, USA, pp. 462–466 (2007)
Micire, M., Drury, J.L., Keyes, B., Yanco, H.A.: Multi-touch interaction for robot control. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, pp. 425–428. New York, USA (2008)
Calinon, S., Billard, A.: PDA interface for humanoid robots. In: Proceedings of the Third IEEE International Conference on Humanoid Robots. Karlsruhe, Germany (2003)
Fong, T.W., Thorpe, C., Baur, C.: Advanced interfaces for vehicle teleoperation: collaborative control, sensor fusion displays, and remote driving tools. Auton. Robots 11, 77–85 (2001). https://doi.org/10.1023/A:1011212313630
Kadous, M.W., Sheh, R.K., Sammut, C.: Effective user interface design for rescue robotics. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human–Robot Interaction. New York, USA, pp. 250–257 (2006)
Weiss, A., Wurhofer, D., Buchner, R., Tscheligi, M., Blasi, L., Plebani, M.: Development of a teleoperator interface for humanoid robots by the means of heuristic evaluation technique. In: Proceedings of the 10th Conference Towards Autonomous Robotic Systems, pp. 236–241. Londonderry, UK (2009)
Yanco, H.A., Keyes, B., Drury, J.L., Nielsen, C.W., Few, D.A., Bruemmer, D.J.: Evolving interface design for robot search tasks. J. Field Robot. 24, 779–799 (2007). https://doi.org/10.1002/rob.20215
Weiss, A., Forster, F., Wurhofer, D., Tscheligi M.: Development of human–robot interaction models by means of a cognitive walkthrough approach. In: Proceedings of the Symposium on New Frontiers in Human–Robot Interaction. Leicester, UK, pp. 128–135 (2010)
Weiss, A., Wurhofer, D., Bernhaupt, R., Altmaninger, M., Tscheligi, M.: A methodological adaptation for heuristic evaluation of HRI. In: Proceedings of the 19th International Symposium in Robot and Human Interactive Communication, pp. 1–6. Viareggio, Italy (2010)
Woods, S., Walters, M., Koay, K., Dautenhahn, K.: Comparing human–robot interaction scenarios using live and video based methods: towards a novel methodological approach. In: Proceedings of 9th IEEE International Workshop on Advanced Motion Control, pp. 750–755. Istanbul, Turkey (2006)
Scholtz, J.: Theory and evaluation of human–robot interactions. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences. Washington, USA (2003)
Kim, E.S., Berkovits, L.D., Bernier, E., Leyzberg, D., Shic, F., Scassellati, B.: Social robots as embedded reinforcers of social behavior in children with autism. J. Autism Dev. Disord. 43(5), 1038–1049 (2012)
Koay, K.L., Dautenhahn, K., Woods, S.N., Walters, M.L.: Empirical results from using a comfort level device in human–robot interaction studies. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction. Salt Lake City, Utah, USA, pp. 194–201 (2006)
Salem, M., Kopp, S., Wachsmuth, I., Rohlfing, K., Joublin, F.: Generation and evaluation of communicative robot gesture. Int. J. Soc. Robot. 4(2), 201–217 (2012)
Heylen, D., van Dijk, B., Nijholt, A.: Robotic rabbit companions: amusing or a nuisance? J. Multimodal User Interfaces 5, 53–59 (2012)
Nikolaidis, S., Shah, J.: Human–robot cross-training: computational formulation, modeling and evaluation of a human team training strategy. In: Proceedings of the 8th ACM/IEEE International Conference on Human–Robot Interaction. Tokyo, Japan, pp. 33–40 (2013)
Suárez-Ruiz, F. (2016) ROS packages for sensable phantom omni device, GitHub, https://github.com/fsuarez6/phantom_omni Accessed 30 July 2018
RodrĂguez-Sedano, F.J., Esteban, G., Inyesto, L., Blanco, P., RodrĂguez-Lera, F.J.: Strategies for haptic-robotic teleoperation in board games: playing checkers with Baxter. In: Proceedings of the 17th Workshop of Physical Agents, pp. 31–37. Málaga, Spain (2016)
Morley, E.C., Wilson, J.R.: The matrix of confusion: a classification of robot movement. J. Eng. Manuf. 210(3), 251–260 (1996)
Macedo, J.A., Kaber, D.B., Endsley, M.R., Powanusorn, P., Myung, S.: The effect of automated compensation for incongruent axes on teleoperator performance. Hum. Factor 40(4), 554–568 (1998)
Nawab, A., Chintamani, K., Ellis, D., Auner, G., Pandya, A.: Joystick mapped augmented reality cues for end-effector controlled teleoperated robots. In: Proceedings of 2007 IEEE Virtual Reality Conference VR’07, pp. 263–266. Charlotte, North Carolina, USA (2007)
Hashimoto, S., Ishida, A., Inami, M.: Touchme: An augmented reality based remote robot manipulation. In: Proceedings of International Conference on Artificial Reality and Telexistence (ICAT), Osaka, Japan (2011)
Chintamani, K., Cao, A., Ellis, R.D., Pandya, A.K.: Improved telemanipulator navigation during display-control misalignments using augmented reality cues. IEEE Trans. Syst. Man Cybern. 40(1), 29–39 (2010)
Ponsa, P., DĂ-az, M.: Creation of an ergonomic guideline for supervisory control interface design. In: Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics. Berlin, pp. 137–146 (2007)
Polson, P.G., Lewis, C., Rieman, J., Wharton, C.: Cognitive walkthroughs: a method for theory-based evaluation of user interfaces. Int. J. Man Mach. Stud. 36, 741–773 (1992)
Boren, T., Ramey, J.: Thinking aloud: reconciling theory and practice. IEEE Trans. Prof. Commun. 43, 261–278 (2000)
Lewis, C.H.: Using the ”Thinking Aloud” Method in Cognitive Interface Design. Technical Report RC-9265. IBM (1982)
Miles, M.B., Huberman, A.M., Huberman, M.A., Huberman, M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, London (1994)
Winograd, T., Flores, F., Flores, F.F.: Understanding Computers and Cognition: A New Foundation for Design. Intellect Books, UK (1986)
Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)
Jeffries, R., Miller, J.R., Wharton, C., Uyeda, K.: User interface evaluation in the real world: a comparison of four techniques. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 119–124 (1991)
Muñoz, L.M., Ponsa, P., Casals, A.: Design and development of a guideline for ergonomic haptic interaction. Hum. Comput. Syst. Interact.: Backgr. Appl. 2(2), 15–19 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
RodrĂguez-Sedano, F.J., Conde, M.A., Ponsa, P. et al. Design and evaluation of a graphical user interface for facilitating expert knowledge transfer: a teleoperation case study. Univ Access Inf Soc 18, 431–442 (2019). https://doi.org/10.1007/s10209-019-00670-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10209-019-00670-1