Skip to main content

Design and evaluation of a graphical user interface for facilitating expert knowledge transfer: a teleoperation case study


Nowadays, teleoperation systems are increasingly used for the training of specific skills to carry out complex tasks in dangerous environments. One of the challenges of these systems is to ensure that the time it takes for users to acquire these skills is as short as possible. For this, the user interface must be intuitive and easy to use. This document describes the design and evaluation of a graphical user interface so that a non-expert user could use a teleoperated system intuitively and without excessive training time. To achieve our goal, we use a user-centered design process model. To evaluate the interface, we use our own methodology and the results allow improving its usability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Fonseca, D., Conde, M.A., García-Peñalvo, F.J.: Improving the information society skills: is knowledge accessible for all? Univ. Access Inf. Soc. 17(2), 229–245 (2018).

    Article  Google Scholar 

  2. Collins, A., Brown, J.S., Newman, S.E.: Cognitive apprenticeship: teaching the crafts of reading, writing, and mathematics. Knowing Learn. Instr.: Essays Honor Robert Glaser 18, 32–42 (1989)

    Google Scholar 

  3. Fitts, P.M.: Perceptual-motor skill learning. Categ. Hum. Learn. 47, 381–391 (1964)

    Google Scholar 

  4. Merians, A.S., Fluet, G.G., Qiu, Q., Saleh, S., Lafond, I., Adamovich, S.V.: Integrated arm and hand training using adaptive robotics and virtual reality simulations. In: Proceedings of the 2010 International Conference on Disability, Virtual Reality and Associated Technology, Maia, Portugal, pp. 213–222 (2010)

  5. Reger, G.M., Gahm, G.A., Rizzo, A.A., Swanson, R.A., Duma, S.: Soldier evaluation of the virtual reality Iraq. Telemed. e-Health J. 15, 100–103 (2009)

    Article  Google Scholar 

  6. Kunkler, K.: The role of medical simulation: an overview. Int. J. Med. Robot. Comput. Assist. Surg. 2, 203–210 (2006)

    Article  Google Scholar 

  7. Youngblood, P.L., Srivastava, S., Curet, M., Heinrichs, W.L., Dev, P., Wren, S.M.: Comparison of training on two laparoscopic simulators and assessment of skills transfer to surgical performance. J. Am. Coll. Surg. 200, 546–551 (2005)

    Article  Google Scholar 

  8. Sturm, L., Windsor, J.A., Cosman, P.H., et al.: A systematic review of skills transfer after surgical simulation training. Ann. Surg. 248, 166–179 (2008)

    Article  Google Scholar 

  9. Moniz, A.B., Krings, B.J.: Robots working with humans or humans working with robots? Searching for social dimensions in new human–robot interaction in industry. Societies 6(3), 23 (2016)

    Article  Google Scholar 

  10. Seymour, N.E., Gallagher, A.G., Roman, S.A., O’brien, M.K., Bansal, V.K., Andersen, D.K., Satava, R.M.: Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann. Surg. 236(4), 458 (2002)

    Article  Google Scholar 

  11. Dawson, D.L., Meyer, J., Lee, E.S., Pevec, W.C.: Training with simulation improves residents’ endovascular procedure skills. J. Vasc. Surg. 45(1), 149–154 (2007)

    Article  Google Scholar 

  12. Vertut, J., Coiffet, P.: Teleoperation and Robotics: Applications and Technology, vol. 3B (1985)

  13. Woods, D.D., Tittle, J., Feil, M., Roesler, A.: Envisioning human–robot coordination in future operations. IEEE Trans. Syst. Man Cybern. Part C 34(2), 210–218 (2004)

    Article  Google Scholar 

  14. Son, H.I., Franchi, A., Chuang, L.L., Kim, J., Bulthoff, H.H., Giordano, P.R.: Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots. IEEE Trans. Cybern. 43(2), 597–609 (2013)

    Article  Google Scholar 

  15. Sitti, M., Hashimoto, H.: Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments. IEEE/ASME Trans. Mechatron. 8(2), 287–298 (2003)

    Article  Google Scholar 

  16. Lee, S., Kim, G.J.: Effects of haptic feedback, stereoscopy, and image resolution on performance and presence in remote navigation. Int. J. Hum Comput Stud. 66(10), 701–717 (2008)

    Article  Google Scholar 

  17. Sallnäs, E.L., Zhai, S.: Collaboration meets Fitts’ Law: passing virtual objects with and without haptic force feedback. In: Proceedings of IFIP Conference on Human-Computer Interaction, Zurich, Switzerland, pp. 97–104 (2003)

  18. Weiss, A., Igelsböck, J., Pierro, P., Buchner, R., Balaguer, C., Tscheligi, M.: User perception of usability aspects in indirect HRI—a chain of translations. In: Proceedings of the 19th International Symposium in Robot and Human Interactive Communication. Viareggio, Italy, pp. 539–545 (2010).

  19. Song, T.H., Park, J.H., Chung, S.M., Hong, S.H., Kwon, K.H., Lee S., Jeon, J.W.: A study on usability of human–robot interaction using a mobile computer and a human interface device. In: Proceedings of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services. New York, USA, pp. 462–466 (2007)

  20. Micire, M., Drury, J.L., Keyes, B., Yanco, H.A.: Multi-touch interaction for robot control. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, pp. 425–428. New York, USA (2008)

  21. Calinon, S., Billard, A.: PDA interface for humanoid robots. In: Proceedings of the Third IEEE International Conference on Humanoid Robots. Karlsruhe, Germany (2003)

  22. Fong, T.W., Thorpe, C., Baur, C.: Advanced interfaces for vehicle teleoperation: collaborative control, sensor fusion displays, and remote driving tools. Auton. Robots 11, 77–85 (2001).

    Article  MATH  Google Scholar 

  23. Kadous, M.W., Sheh, R.K., Sammut, C.: Effective user interface design for rescue robotics. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human–Robot Interaction. New York, USA, pp. 250–257 (2006)

  24. Weiss, A., Wurhofer, D., Buchner, R., Tscheligi, M., Blasi, L., Plebani, M.: Development of a teleoperator interface for humanoid robots by the means of heuristic evaluation technique. In: Proceedings of the 10th Conference Towards Autonomous Robotic Systems, pp. 236–241. Londonderry, UK (2009)

  25. Yanco, H.A., Keyes, B., Drury, J.L., Nielsen, C.W., Few, D.A., Bruemmer, D.J.: Evolving interface design for robot search tasks. J. Field Robot. 24, 779–799 (2007).

    Article  Google Scholar 

  26. Weiss, A., Forster, F., Wurhofer, D., Tscheligi M.: Development of human–robot interaction models by means of a cognitive walkthrough approach. In: Proceedings of the Symposium on New Frontiers in Human–Robot Interaction. Leicester, UK, pp. 128–135 (2010)

  27. Weiss, A., Wurhofer, D., Bernhaupt, R., Altmaninger, M., Tscheligi, M.: A methodological adaptation for heuristic evaluation of HRI. In: Proceedings of the 19th International Symposium in Robot and Human Interactive Communication, pp. 1–6. Viareggio, Italy (2010)

  28. Woods, S., Walters, M., Koay, K., Dautenhahn, K.: Comparing human–robot interaction scenarios using live and video based methods: towards a novel methodological approach. In: Proceedings of 9th IEEE International Workshop on Advanced Motion Control, pp. 750–755. Istanbul, Turkey (2006)

  29. Scholtz, J.: Theory and evaluation of human–robot interactions. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences. Washington, USA (2003)

  30. Kim, E.S., Berkovits, L.D., Bernier, E., Leyzberg, D., Shic, F., Scassellati, B.: Social robots as embedded reinforcers of social behavior in children with autism. J. Autism Dev. Disord. 43(5), 1038–1049 (2012)

    Article  Google Scholar 

  31. Koay, K.L., Dautenhahn, K., Woods, S.N., Walters, M.L.: Empirical results from using a comfort level device in human–robot interaction studies. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction. Salt Lake City, Utah, USA, pp. 194–201 (2006)

  32. Salem, M., Kopp, S., Wachsmuth, I., Rohlfing, K., Joublin, F.: Generation and evaluation of communicative robot gesture. Int. J. Soc. Robot. 4(2), 201–217 (2012)

    Article  Google Scholar 

  33. Heylen, D., van Dijk, B., Nijholt, A.: Robotic rabbit companions: amusing or a nuisance? J. Multimodal User Interfaces 5, 53–59 (2012)

    Article  Google Scholar 

  34. Nikolaidis, S., Shah, J.: Human–robot cross-training: computational formulation, modeling and evaluation of a human team training strategy. In: Proceedings of the 8th ACM/IEEE International Conference on Human–Robot Interaction. Tokyo, Japan, pp. 33–40 (2013)

  35. Suárez-Ruiz, F. (2016) ROS packages for sensable phantom omni device, GitHub, Accessed 30 July 2018

  36. Rodríguez-Sedano, F.J., Esteban, G., Inyesto, L., Blanco, P., Rodríguez-Lera, F.J.: Strategies for haptic-robotic teleoperation in board games: playing checkers with Baxter. In: Proceedings of the 17th Workshop of Physical Agents, pp. 31–37. Málaga, Spain (2016)

  37. Morley, E.C., Wilson, J.R.: The matrix of confusion: a classification of robot movement. J. Eng. Manuf. 210(3), 251–260 (1996)

    Article  Google Scholar 

  38. Macedo, J.A., Kaber, D.B., Endsley, M.R., Powanusorn, P., Myung, S.: The effect of automated compensation for incongruent axes on teleoperator performance. Hum. Factor 40(4), 554–568 (1998)

    Article  Google Scholar 

  39. Nawab, A., Chintamani, K., Ellis, D., Auner, G., Pandya, A.: Joystick mapped augmented reality cues for end-effector controlled teleoperated robots. In: Proceedings of 2007 IEEE Virtual Reality Conference VR’07, pp. 263–266. Charlotte, North Carolina, USA (2007)

  40. Hashimoto, S., Ishida, A., Inami, M.: Touchme: An augmented reality based remote robot manipulation. In: Proceedings of International Conference on Artificial Reality and Telexistence (ICAT), Osaka, Japan (2011)

  41. Chintamani, K., Cao, A., Ellis, R.D., Pandya, A.K.: Improved telemanipulator navigation during display-control misalignments using augmented reality cues. IEEE Trans. Syst. Man Cybern. 40(1), 29–39 (2010)

    Article  Google Scholar 

  42. Ponsa, P., Dí-az, M.: Creation of an ergonomic guideline for supervisory control interface design. In: Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics. Berlin, pp. 137–146 (2007)

  43. Polson, P.G., Lewis, C., Rieman, J., Wharton, C.: Cognitive walkthroughs: a method for theory-based evaluation of user interfaces. Int. J. Man Mach. Stud. 36, 741–773 (1992)

    Article  Google Scholar 

  44. Boren, T., Ramey, J.: Thinking aloud: reconciling theory and practice. IEEE Trans. Prof. Commun. 43, 261–278 (2000)

    Article  Google Scholar 

  45. Lewis, C.H.: Using the ”Thinking Aloud” Method in Cognitive Interface Design. Technical Report RC-9265. IBM (1982)

  46. Miles, M.B., Huberman, A.M., Huberman, M.A., Huberman, M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, London (1994)

    MATH  Google Scholar 

  47. Winograd, T., Flores, F., Flores, F.F.: Understanding Computers and Cognition: A New Foundation for Design. Intellect Books, UK (1986)

    MATH  Google Scholar 

  48. Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)

    MATH  Google Scholar 

  49. Jeffries, R., Miller, J.R., Wharton, C., Uyeda, K.: User interface evaluation in the real world: a comparison of four techniques. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 119–124 (1991)

  50. Muñoz, L.M., Ponsa, P., Casals, A.: Design and development of a guideline for ergonomic haptic interaction. Hum. Comput. Syst. Interact.: Backgr. Appl. 2(2), 15–19 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. A. Conde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Sedano, F.J., Conde, M.A., Ponsa, P. et al. Design and evaluation of a graphical user interface for facilitating expert knowledge transfer: a teleoperation case study. Univ Access Inf Soc 18, 431–442 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: