Skip to main content

The future of smartwatches: assessing the end-users’ continuous usage using an extended expectation-confirmation model

Abstract

This work aims to examine the underlying factors associated with the continuous usage of smartwatches and propose a relevant theoretical framework. In order to understand and correlate the exact user motivations and expectations before and after using a smartwatch, a dual approach is taken comprising of a detailed literature review with thematic analysis of the data obtained from an ethnographic study involving 42 participants. Nine key determinants of continuous usage of smartwatches are identified, with four of them being introduced for the first time (perceived comfort, self-socio motivation, battery-life concern, and perceived accuracy and functional limitations) in the wearable context. Thereafter, a research model is developed based upon the expectation-confirmation model (ECM) and empirically tested using a partial least square structural equation modeling approach (PLS-SEM) on data obtained from 312 long-term smartwatch users across four Asian countries. Perceived usefulness, hedonic motivation, perceived comfort and self-socio motivation have a positive impact on the continuous usage. However, perceived privacy, battery-life concern, and perceived accuracy and functional limitations have a negative impact on the continuous usage of smartwatches, the last one being the greatest predictor. The effect of hedonic motivation on perceived usefulness is non-significant. The model explains 64.8% of the variance in the final dependable construct, i.e. continuous usage. The insights provided by this work can help the smartwatch stakeholders to mitigate the existing drawbacks and formulate better growth strategies along with the directions for further development with an aim to increase the customers’ continuous usage of smartwatches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Statista: Wearable technology—statistics and facts. http://www.statista.com/topics/1556/wearable-technology/ (2017). Accessed 22 Feb 2018

  2. Cecchinato, M.E., Cox, A.L., Bird, J.: (2015) Smartwatches: the good, the bad, and the ugly?. In: Proceedings 33rd Annual ACM Conference Extended Abstracts on Human factors in Computing Systems, pp 2133–2138

  3. Vandrico: The wearables database. https://vandrico.com/wearables/ (2017). Accesses 24 Feb 2018

  4. Wu, L.H., Wu, L.C., Chang, S.C.: Exploring consumer’s intention to accept smartwatch. Comput. Hum. Behav. 64, 383–392 (2016)

    Google Scholar 

  5. Chang, Y., Kim, S., Lee, H., Park, M.C.: A study on the resistance behavior of long-term subscribers to switch from mobile network operators. Entrue J. Inf. Technol. 13(2), 77–91 (2014)

    Google Scholar 

  6. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989)

    Google Scholar 

  7. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)

    Google Scholar 

  8. Bhattacherjee, A.: Understanding information systems continuance: an expectation-confirmation model. MIS Q. 25, 351–370 (2001)

    Google Scholar 

  9. Bhattacherjee, A., Hikmet, N.: Reconceptualizing organizational support and its effect on information technology usage: evidence from the healthcare sector. J. Comput. Inf. Syst. 48, 69–76 (2008)

    Google Scholar 

  10. Venkatesh, V., Thong, J.Y.L., Chan, F.K.Y., Hu, P.J.H., Brown, S.A.: Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Inf. Syst. J. 21, 527–555 (2011)

    Google Scholar 

  11. Ha, T., Beijnon, B., Kim, S., Lee, S., Kim, J.H.: Examining user perceptions of smartwatch through dynamic topic modelling. Telemat. Inform. 34, 1262–1273 (2017)

    Google Scholar 

  12. Kim, K.J., Shin, D.H.: An acceptance model for smartwatches. Internet Res. 25(4), 527–541 (2015)

    Google Scholar 

  13. Chuah, S.H.W., Rauschnabel, P.A., Krey, N., Nguyen, B., Ramayah, T., Lade, S.: Wearable technologies: the role of usefulness and visibility in smartwatch adoption. Comput. Hum. Behav. 65, 276–284 (2016)

    Google Scholar 

  14. Hsiao, K.L.: What drives smartwatch adoption intention? Comparing Apple and non-Apple watches. Library Hi Tech 35(1), 186–206 (2017)

    MathSciNet  Google Scholar 

  15. Raskovic, D., Martin, T., Jovanov, E.: Medical monitoring applications for wearable computing. Comput. J. 47(4), 495–504 (2004)

    Google Scholar 

  16. Chatterjee, A., Aceves, A., Dungca, R., Flores, H., Giddens, K.: (2016) Classification of wearable computing: a survey of electronic assistive technology and future design. In: Proceedings 2nd International Conference on Research in Computational Intelligence and Communication Networks, pp 22–27

  17. Mardonova, M., Choi, Y.: Review of wearable device technology and its applications to the mining industry. Energies 11(3), 547 (2018)

    Google Scholar 

  18. Chan, M., Estève, D., Fourniols, J.Y., Escriba, C., Campo, E.: Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56(3), 137–156 (2012)

    Google Scholar 

  19. Kalantari, M.: Consumers’ adoption of wearable technologies: literature review, synthesis, and future research agenda. Int. J. Technol. Mark. 12(3), 274–307 (2017)

    Google Scholar 

  20. Dieck, M., Jung, T.: A theoretical model of mobile augmented reality acceptance in urban heritage tourism. Curr. Issues Tour. 21(2), 154–174 (2015)

    Google Scholar 

  21. Rauschnabel, P.: Virtually enhancing the real world with holograms: an exploration of expected gratifications of using augmented reality smart glasses. Psychol. Mark. 35(8), 1–16 (2018)

    Google Scholar 

  22. Rauschnabel, P., Ro, Y.K.: Augmented reality smart glasses: an investigation of technology acceptance drivers. Int. J. Technol. Mark. 11(2), 123–148 (2016)

    Google Scholar 

  23. Rauschnabel, P., Brem, A., Ivens, B.: Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Comput. Hum. Behav. 49, 635–647 (2015)

    Google Scholar 

  24. Rauschnabel, P., Hein, D.W., He, J., Ro, Y.K., Rawashdeh, S., Krulikowski, B.: Fashion or technology? A fashion perspective on the perception and adoption of augmented reality smart glasses. i-com J. Interact. Media 15(2), 179–194 (2016)

    Google Scholar 

  25. Fang, Y.M., Chang, C.C.: User’s psychological perception and perceived readability of wearable devices for elderly people. Behav. Inf. Technol. 35(3), 225–232 (2016)

    Google Scholar 

  26. Canhoto, A.I., Arp, S.: Exploring the factors that support adoption and sustained use of health and fitness wearables. J. Mark. Manag. 33(1–2), 32–60 (2017)

    Google Scholar 

  27. Turhan, G.: An assessment towards the acceptance of wearable technology to consumers in Turkey: the application to smart bra and t-shirt products. J. Text. Inst. 104(4), 375–395 (2013)

    Google Scholar 

  28. Wu, L., Fan, A.A., Mattila, A.S.: Wearable technology in service delivery processes: the gender-moderated technology objectification effect. Int. J. Hosp. Manag. 51, 1–7 (2015)

    Google Scholar 

  29. Zhang, M., Luo, M., Nie, R., Zhang, Y.: Technical attributes, health attribute, consumer attributes, and their roles in adoption intention of healthcare wearable technology. Int. J. Med. Inform. 108, 97–109 (2017)

    Google Scholar 

  30. Basoglu, N., Ok, A.. E, Daim, T.U.: Technology adoption: case of smart glasses. Technol. Soc. 50, 50–56 (2017)

    Google Scholar 

  31. Bodine, K., Gemperle, F.: (2005) Effects of functionality on perceived comfort of wearables. In: Proceedings 7th IEEE International Symposium on Wearable Computers, pp 57–60

  32. Nasir, S., Yurder, Y.: Consumers’ and physicians’ perceptions about high tech wearable health products. Procedia Soc. Behav. Sci. 195, 1261–1267 (2015)

    Google Scholar 

  33. Yang, H., Yu, J., Zo, H., Choi, M.: User acceptance of wearable devices: an extended perspective of perceived value. Telemat. Inform. 33, 256–269 (2016)

    Google Scholar 

  34. Gu, Z., Wei, J., Xu, F.: An empirical study on factors influencing consumer’s initial trust in wearable commerce. J. Comput. Inf. Syst. 56(1), 79–85 (2016)

    Google Scholar 

  35. Choi, J., Kim, S.: Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Comput. Hum. Behav. 63, 777–786 (2016)

    Google Scholar 

  36. Potnis, D., Demissie, D., Deosthali, K.: Student’s intention to adopt internet-based personal safety wearable devices: extending UTAUT with trusting belief. First Monday 22(9), 1–14 (2017)

    Google Scholar 

  37. Kim, K.J.: Round or square? How screen shape affects utilitarian and hedonic motivations for smartwatch adoption. Cyberpsychol. Behav. Soc. Netw. 19(12), 733–739 (2016)

    Google Scholar 

  38. Kim, K.J.: Shape and size matter for smartwatches: effects of screen shape, screen size, and presentation mode in wearable communication. J. Comput. Mediated Commun. 22, 124–140 (2017)

    Google Scholar 

  39. Lunney, A., Cunningham, N.. R, Eastin, M.S.: Wearable fitness technology: a structural investigation into acceptance and perceived fitness outcomes. Comput. Hum. Behav. 65, 114–120 (2016)

    Google Scholar 

  40. Jeong, S.C., Kim, S.H., Park, J.Y., Choi, B.: Domain-specific innovativeness and new product adoption: a case of wearable devices. Telemat. Inform. 34, 399–412 (2017)

    Google Scholar 

  41. Dehghani, M.: Exploring the motivational factors on continuous usage intention of smartwatches among actual users. Behav. Inf. Technol. 37(2), 145–158 (2018)

    MathSciNet  Google Scholar 

  42. Rauschnabel, P., Brem, A., Ro, Y.K.: (2015) Augmented reality smart glasses: definition, conceptual insights, and managerial importance. The University of Michigan-Dearborn. Working paper

  43. Oliver, R.L.: A cognitive model for the antecedents and consequences of satisfaction. J. Mark. Res. 17, 460–469 (1980)

    Google Scholar 

  44. Oghuma, A.P., Saenz, C.L., Wong, S.F., Chang, Y.: An expectation-confirmation model of continuance intention to use mobile instant messaging. Telemat. Inf. 33, 34–47 (2016)

    Google Scholar 

  45. Lee, M.C.: Explaining and predicting users’ continuance intention toward e learning: an extension of the expectation-confirmation model. Comput. Educ. 54, 506–516 (2010)

    Google Scholar 

  46. Susanto, A., Chang, Y., Ha, Y.: Determinants of continuance intention to use the smartphone banking services. Ind. Manag. Data Syst. 116(3), 508–525 (2016)

    Google Scholar 

  47. Eveleth, L.B., Stone, R.W.: Usability, expectation, confirmation, and continuance intentions to use electronic textbooks. Behav. Inf. Technol. 34(10), 992–1004 (2015)

    Google Scholar 

  48. Mingmuang, C., Chongsuphajaisiddhi, V., Papasratorn, B.: (2015) Factors influencing continuance intention to use PSTN: a pilot study of an extended expectation confirmation model for legacy technology. In: Proceedings 7th International Conference on Ubiquitous and Future Networks, pp 874–878

  49. Joo, Y.J., Park, S., Shin, E.K.: Students’ expectation, satisfaction, and continuance intention to use digital textbooks. Comput. Hum. Behav. 69, 83–90 (2017)

    Google Scholar 

  50. Shang, D., Wu, W.: Understanding mobile shopping consumers’ continuance intention. Ind. Manag. Data Syst. 117(1), 213–227 (2017)

    Google Scholar 

  51. Lin, X., Featherman, M., Sarker, S.: Understanding factors affecting users’ social networking site continuance: a gender difference perspective. Inf. Manag. 54(3), 383–395 (2017)

    Google Scholar 

  52. Mouakket, S.: Factors influencing continuance intention to use social networking sites: the Facebook case. Comput. Hum. Behav. 53, 102–110 (2015)

    Google Scholar 

  53. Shen, X.L., Li, Y.J., Sun, Y.: (2018) Wearable health information systems intermittent discontinuance: a revised expectation-disconfirmation model. Ind. Manag. Data Syst. https://doi.org/10.1108/IMDS-05-2017-0222. (accepted)

    Article  Google Scholar 

  54. Harviainen, J.T., Rapp, A.: (2018) Multiplayer online role-playing as information retrieval and system use: an ethnographic study. J. Doc. https://doi.org/10.1108/JD-07-2017-0100

    Article  Google Scholar 

  55. Jamshed, S.: Qualitative research method: interviewing and observation. J. Basic Clin. Pharm. 5(4), 87–88 (2014)

    Google Scholar 

  56. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006)

    Google Scholar 

  57. Venkatesh, V.: Creation of favorable user perceptions: exploring the role of intrinsic motivations. MIS Q. 23(2), 239–260 (1999)

    Google Scholar 

  58. Kim, H.W., Chan, H.C., Gupta, S.: Value-based adoption of mobile internet: an empirical investigation. Decis. Support Syst. 43(1), 111–126 (2007)

    Google Scholar 

  59. Marangunić, N., Granić, A.: Technology acceptance model: a literature review from 1986 to 2013. Univ. Access Inf. Soc. 14(1), 81–95 (2015)

    Google Scholar 

  60. Tarhini, A., Arachchilage, N.A.G., Masa’deh, R., Abbasi, M.S.: A critical review of theories and models of technology adoption and acceptance in information system research. Int. J. Technol. Diffus. 6(4), 1–20 (2015)

    Google Scholar 

  61. Park, Y., Chen, J.V.: Acceptance and adoption of the innovative use of smartphone. Ind. Manag. Data Syst. 107(9), 1349–1365 (2007)

    Google Scholar 

  62. Kulviwat, S., Bruner, G.C., Kumar, A., Nasco, S.A., Clark, T.: Toward a unified theory of consumer acceptance technology. Psychol. Mark. 24(12), 1059–1084 (2007)

    Google Scholar 

  63. Wixom, B.H., Todd, P.A.: A theoretical integration of user satisfaction and technology acceptance. Inf. Syst. Res. 16(1), 85–102 (2005)

    Google Scholar 

  64. Bhattacherjee, A., Premkumar, G.: Understanding changes in belief and attitude toward information technology usage: a theoretical model and longitudinal test. MIS Q. 28(2), 229–254 (2004)

    Google Scholar 

  65. Taherdoost, H.: Development of an adoption model to assess user acceptance of e-service technology: e-service technology acceptance model. Behav. Inf. Technol. 37(2), 173–197 (2018)

    Google Scholar 

  66. Kang, Y.S., Lee, H.: Understanding the role of an IT artifact in online service continuance: an extended perspective of user-satisfaction. Comput. Hum. Behav. 26(3), 353–364 (2010)

    Google Scholar 

  67. Chiu, C.M., Hsu, M.H., Sun, S.Y., Lin, T.C., Sun, P.C.: Usability, quality, value and e-learning continuance decisions. Comput. Educ. 45(4), 399–416 (2005)

    Google Scholar 

  68. Roca, J.C., Chiu, C.M., Martinez, F.J.: Understanding e-learning continuance intention: an extension of the technology acceptance model. Int. J. Hum. Comput. Stud. 64(8), 683–696 (2006)

    Google Scholar 

  69. Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012)

    Google Scholar 

  70. Datta, H., Knox, G., Bronnenberg, B.J.: Changing their tune: how consumers’ adoption of online streaming affects music consumption and discovery. Mark. Sci. 37(1), 5–21 (2017)

    Google Scholar 

  71. Armenteros, M., Liaw, S.S., Fernandez, M., Diaz, R.F., Sanchez, R.A.: Surveying FIFA instructors’ behavioral intention toward the multimedia teaching materials. Comput. Educ. 61, 91–104 (2013)

    Google Scholar 

  72. Ayeh, J.K., Au, N., Law, R.: Predicting the intention to use consumer generated media for travel planning. Tour. Manag. 35, 132–143 (2013)

    Google Scholar 

  73. Kakar, A.K.: How to perceived enjoyment and perceived usefulness of a software product interact over time to impact technology acceptance? Interact. Comput. 29(4), 467–480 (2017)

    Google Scholar 

  74. Kim, Y.H., Kim, D.J., Wachter, K.: A study of mobile user engagement (MoEN): engagement motivations, perceived value, satisfaction, and continued engagement intention. Decis. Support Syst. 56, 361–370 (2013)

    Google Scholar 

  75. Yang, H.E., Wu, C.C., Wang, K.C.: An empirical analysis of online game service satisfaction and loyalty. Expert Syst. Appl. 36(2), 1816–1825 (2009)

    Google Scholar 

  76. Wang, W., Ngai, E.W.T., Wei, H.: Explaining Instant Messaging continuance intention: the role of personality. Int. J. Hum. Comput. Interact. 28(8), 500–510 (2012)

    Google Scholar 

  77. Heijden, H.V.D.: User acceptance of hedonic information systems. MIS Q. 28(4), 695–704 (2004)

    Google Scholar 

  78. Rauniar, R., Rawski, G., Johnson, B.: Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. J. Enterp. Inf. Manag. 27(1), 6–30 (2014)

    Google Scholar 

  79. Lu, J., Liu, C., Wei, J.: How important are enjoyment and mobility for mobile applications? J. Comput. Inf. Syst. 57(1), 1–12 (2016)

    Google Scholar 

  80. Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55(1), 68–78 (2000)

    Google Scholar 

  81. Decharms, R.: Personal causation training in the schools. J. Appl. Soc. Psychol. 2(2), 95–113 (1972)

    Google Scholar 

  82. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process 50(2), 179–211 (1991)

    Google Scholar 

  83. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46(2), 186–204 (2000)

    Google Scholar 

  84. Pal, D., Funilkul, S., Charoenkitkarn, N., Kanthamanon, P.: Internet-of-things and smart-homes for elderly healthcare: an end user perspective. IEEE Access 6, 10483–10496 (2018)

    Google Scholar 

  85. Chang, S.E., Shen, W.C., Yeh, C.H.: A comparative study of user intention to recommend content on mobile social networks. Multimedia Tools Appl. 76(4), 5399–5417 (2017)

    Google Scholar 

  86. Pavlou, P.A., Liang, H.G., Xue, Y.J.: Understanding and mitigating uncertainty in online exchange relationships: a principal-agent perspective. MIS Q. 31(1), 105–136 (2007)

    Google Scholar 

  87. Mani, Z., Chouk, I.: Drivers of consumers’ resistance to smart products. J. Mark. Manag. 33(1–2), 76–97 (2016)

    Google Scholar 

  88. Yoon, H.K., Occeña, L.: Impacts of customers’ perceptions on internet banking use with a smartphone. J. Comput. Inf. Syst. 54(3), 1–9 (2014)

    Google Scholar 

  89. Wilson, C., Hargreaves, T., Baldwin, R.H.: Benefits and risks of smart home technologies. Energy Policy 103, 72–83 (2017)

    Google Scholar 

  90. Khalilzadeh, J., Ozturk, A.B., Bilgihan, A.: Security related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Comput. Hum. Behav. 70(2017), 460–474 (2017)

    Google Scholar 

  91. Hou, J.N.Y., Peng, W., Lee, K.M.: Effects of screen size, viewing angle, and players’ immersion tendencies on game experience. Comput. Hum. Behav. 28(2), 617–623 (2012)

    Google Scholar 

  92. Kim, K.J., Sundar, S.S.: Mobile persuasion: can screen size and presentation mode make a difference to trust? Hum. Commun. Res. 42(1), 45–70 (2016)

    Google Scholar 

  93. Hsiao, K.L., Chen, C.C.: What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telemat. Inform. 35(1), 103–113 (2018)

    Google Scholar 

  94. Adapa, A., Nah, F.F.H., Siau, K., Smith, S.N.: Factors influencing the adoption of smart-wearable devices. Int. J. Hum. Comput. Interact. 34(5), 399–409 (2017)

    Google Scholar 

  95. Jegethesan, K., Sneddon, J.N., Soutar, G.N.: Young Australian consumer’s preferences for fashion apparel attributes. J. Fash. Mark. Manag. Int. J. 16(3), 275–289 (2012)

    Google Scholar 

  96. Watson, Z.M., Yan, R.N.: An exploratory study of the decision-processes of fast versus slow fashion consumers. J. Fash. Mark. Manag. Int. J. 17(2), 141–159 (2013)

    Google Scholar 

  97. Ferreira, D.F., Dey, A.K., Kostakos, V.: (2011) Understanding human–smartphone concerns: a study of battery life. In: Proceedings International Conference on Pervasive Computing, pp 19–33

  98. Rawassizadeh, R., Price, B.A., Petre, M.: Wearables: has the age of smartwatches finally arrived? Commun. ACM 58(1), 45–47 (2015)

    Google Scholar 

  99. Spreer, P., Rauschnabel, P.A.: Selling with technology: understanding the resistance to mobile sales assistant use in retailing. J. Pers. Sell. Sales Manag. 36(3), 240–263 (2016)

    Google Scholar 

  100. Park, E., Ohm, J.: Factors influencing users’ employment of mobile map services. Telemat. Inform. 31(2), 253–265 (2014)

    Google Scholar 

  101. Zhu, D.H.: How the content of location-based advertisings influences consumers’ store patronage intention. J. Consum. Mark. 34(7), 603–611 (2017)

    Google Scholar 

  102. Lee, Y.E., Benbasat, I.: The influence of tradeoff-difficulty caused by preference elicitation methods on user acceptance of recommendation agents across loss and gain conditions. Inf. Syst. Res. 22(4), 867–884 (2011)

    Google Scholar 

  103. Zhu, D.H., Chang, Y.P., Luo, J.J., Li, X.: Understanding the adoption of location-based recommendation agents among active users’ of social networking sites. Inf. Process. Manag. 50(5), 675–682 (2014)

    Google Scholar 

  104. Pu, P., Chen, L., Hu, R.: (2011) A user-centric evaluation framework for recommender systems, In: Proceedings 5th ACM Conference on Recommender Systems, pp 157–164

  105. Liao, Z., Cheung, M.T.: Internet based e-banking and consumer attitudes: an empirical study. Inf. Manag. 39(4), 283–295 (2002)

    Google Scholar 

  106. Bhattacherjee, A.: An empirical analysis of the antecedents of electronic commerce service continuation. Decis. Support Syst. 32(2), 201–214 (2001)

    Google Scholar 

  107. Thong, J.Y., Hong, S.J., Tam, K.Y.: The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. Int. J. Hum. Comput. Stud. 64(9), 799–810 (2006)

    Google Scholar 

  108. Taylor, S., Todd, P.A.: Understanding information technology usage: a test of competing models. Inf. Syst. Res. 6(2), 144–176 (1995)

    Google Scholar 

  109. Verkasalo, H., Lopez, N.C., Molina, C.F.J., Bouwman, H.: Analysis of users and non-users of smartphone applications. Telemat. Inform. 27(3), 242–255 (2010)

    Google Scholar 

  110. Malhotra, N., Kim, S., Agarwal, J.: Internet users’ information privacy concerns: the construct, the scale, and a causal model. Inf. Syst. Res. 15(4), 336–355 (2004)

    Google Scholar 

  111. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis, 7th edn. Prentice Hall Higher Education, Upper Saddle River (2010)

    Google Scholar 

  112. Anderson, J., Gerbing, D.: Structural equation modelling in practice: a review and recommended two-step approach. Psychol. Bull. 103(3), 411–423 (1988)

    Google Scholar 

  113. Claes, F., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18(1), 39–50 (1981)

    Google Scholar 

  114. Chin, W.W.: The partial least squares approach to structural equation modelling. In: Marcoulides, G.A. (ed.) Modern Methods for Business Research, pp. 22295–22336. Lawrence Erlbaum Associates, New Jersey (1998)

    Google Scholar 

  115. Hair, J., Hult, G., Ringle, C., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modelling (PLS-SEM). Sage Publications, Thousand Oaks (2016)

    MATH  Google Scholar 

  116. Tenehaus, M., Vinzi, V., Chatelin, Y., Lauro, C.: PLS path modelling. Comput. Stat. Data Anal. 48(1), 159–205 (2005)

    MATH  Google Scholar 

  117. Wetzels, M.: Using PLS path modelling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Q. 33(1), 177–195 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Pal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Funilkul, S. & Vanijja, V. The future of smartwatches: assessing the end-users’ continuous usage using an extended expectation-confirmation model. Univ Access Inf Soc 19, 261–281 (2020). https://doi.org/10.1007/s10209-018-0639-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-018-0639-z

Keywords

  • Smartwatch
  • Continuous intention
  • Expectation-confirmation model
  • IoT