Advertisement

Universal Access in the Information Society

, Volume 18, Issue 2, pp 257–268 | Cite as

Effects of augmented reality-based multidimensional concept maps on students’ learning achievement, motivation and acceptance

  • Chien-Hsu ChenEmail author
  • Chun-Yen Huang
  • Yin-Yu Chou
Long Paper
  • 381 Downloads

Abstract

In this study, an augmented reality-based multidimensional concept map (ARMCM) learning system is proposed for conducting mobile learning activities. The subjects consisted of 65 students with an average age of 11 years in an elementary school in Taiwan. They were divided into an ARMCM group and a multidimensional concept map (MCM) group. An experiment was conducted to evaluate the effectiveness of the proposed approach. The experimental results suggested that students in the ARMCM group performed significantly better than those in the MCM group. Moreover, this study also found that the students using the ARMCM learning approach showed significantly higher motivation than those using the MCM learning approach, because ARMCM learning is able to simulate the complex knowledge that they needed to learn. ARMCM learning was easier to understand and easy to use, as it could simplify the content of the learning knowledge. Pedagogical implications, conclusion, and some suggestions based on this study are provided.

Keywords

Augmented reality Multidimensional concept map Mobile learning Interactive learning environments 

References

  1. 1.
    McCabe, B.: An integrated approach to the use of complementary visual learning tools in an undergraduate microbiology class. J. Biol. Educ. 45(4), 236–243 (2011).  https://doi.org/10.1080/00219266.2010.549496 MathSciNetGoogle Scholar
  2. 2.
    Hwang, G.J., Wu, C.H., Kuo, F.R.: Effects of touch technology-based concept mapping on students’ learning attitudes and perceptions. Educ. Technol. Soc. 16(3), 274–285 (2013)Google Scholar
  3. 3.
    Asan, A.: Concept mapping in science class: a case study of fifth grade students. Educ. Technol. Soc. 10(1), 186–195 (2007)Google Scholar
  4. 4.
    Conradty, C., Bogner, F.X.: Knowledge presented in concept maps: correlations with conventional cognitive knowledge tests. Educ. Stud. 38(3), 341–354 (2012).  https://doi.org/10.1080/03055698.2011.643100 Google Scholar
  5. 5.
    Huang, H.S., Chiou, C.C., Chiang, H.K., Lai, S.H., Huang, C.Y., Chou, Y.Y.: Effects of multidimensional concept maps on fourth graders’ learning in web-based computer course. Comput. Educ. 58(3), 863–873 (2012).  https://doi.org/10.1016/j.compedu.2011.10.016 Google Scholar
  6. 6.
    Hwang, G.J., Shi, Y.R., Chu, H.C.: A concept map approach to developing collaborative mindtools for context-aware ubiquitous learning. Br. J. Educ. Technol. 42(5), 778–789 (2011).  https://doi.org/10.1111/j.1467-8535.2010.01102.x Google Scholar
  7. 7.
    Hung, P.H., Hwang, G.J., Su, I., Lin, I.H.: A concept-map integrated dynamic assessment system for improving ecology observation competences in mobile learning activities. Turk. Online J. Educ. Technol. 11(1), 10–19 (2012)Google Scholar
  8. 8.
    Yang, C.C., Hwang, G.J., Hung, C.M., Tseng, S.S.: An evaluation of the learning effectiveness of concept map-based science book reading via mobile devices. Educ. Technol. Soc. 16(3), 167–178 (2013)Google Scholar
  9. 9.
    Huang, H.S., Shiu, L.Y., Wang, Y.S., Chang, J.S.: A new method for building web-based courseware. Curric. Instr. Q. 8(3), 127–155 (2005)Google Scholar
  10. 10.
    Eppler, M.J.: A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. Inf. Vis. 5(3), 202–210 (2006).  https://doi.org/10.1057/palgrave.ivs.9500131 Google Scholar
  11. 11.
    Chiou, C.C., Tien, L.C., Lee, L.T.: Effects on learning of multimedia animation combined with multidimensional concept maps. Comput. Educ. 80, 211–223 (2015).  https://doi.org/10.1016/j.compedu.2014.09.002 Google Scholar
  12. 12.
    Tergan, S.O., Keller, T., Burkhard, R.A.: Integrating knowledge and information: digital concept maps as a bridging technology. Inf. Vis. 5(3), 167–174 (2006)Google Scholar
  13. 13.
    Chen, C.H., Chou, Y.Y., Huang, C.Y.: An augmented-reality-based concept map to support mobile learning for science. Asia-Pac. Educ. Res. 25(4), 567–578 (2016).  https://doi.org/10.1007/s40299-016-0284-3 Google Scholar
  14. 14.
    Dunleavy, M., Dede, C., Mitchell, R.: Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J. Sci. Educ. Technol. 18(1), 7–22 (2009).  https://doi.org/10.1007/s10956-008-9119-1 Google Scholar
  15. 15.
    McCall, R., Wetzel, R., Löschner, J., Braun, A.K.: Using presence to evaluate an augmented reality location aware game. Pers. Ubiquitous Comput. 15(1), 25–35 (2011).  https://doi.org/10.1007/s00779-010-0306-8 Google Scholar
  16. 16.
    Cheng, K.H., Tsai, C.C.: Affordances of augmented reality in science learning: suggestions for future research. J. Sci. Educ. Technol. 22(4), 449–462 (2013).  https://doi.org/10.1007/s10956-012-9405-9 Google Scholar
  17. 17.
    Dunleavy, M., Dede, C.: Augmented reality teaching and learning. In: Spector, J.M., Merrill, M.D., Elen, J., Bishop, M.J. (eds.) Handbook of Research on Educational Communications and Technology, 4th edn, pp. 735–745. Springer, New York (2014).  https://doi.org/10.1007/978-1-4614-3185-5_59 Google Scholar
  18. 18.
    Di Serio, Á., Ibáñez, M.B., Kloos, C.D.: Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 68, 586–596 (2013).  https://doi.org/10.1016/j.compedu.2012.03.002 Google Scholar
  19. 19.
    Lee, H., Billinghurst, M., Woo, W.: Two-handed tangible interaction techniques for composing augmented blocks. Virtual Real. 15(2), 133–146 (2011).  https://doi.org/10.1007/s10055-010-0163-9 Google Scholar
  20. 20.
    Ausubel, D.P., Novak, J.D., Hanesian, H.: Educational psychology: a cognitive view. Holt, Rinehart and Winston, New York (1968)Google Scholar
  21. 21.
    Novak, J.D.: Concept mapping: a useful tool for science education. J. Res. Sci. Teach. 27(10), 937–949 (1990).  https://doi.org/10.1002/tea.3660271003 Google Scholar
  22. 22.
    BouJaoude, S., Attieh, M.: The effect of using concept maps as study tools on achievement in chemistry. Eurasia J. Math. Sci. Technol. Educ. 4(3), 233–246 (2008)Google Scholar
  23. 23.
    Liu, C.C., Chen, H.S., Shih, J.L., Huang, G.T., Liu, B.J.: An enhanced concept map approach to improving children’s storytelling ability. Comput. Educ. 56(3), 873–884 (2011).  https://doi.org/10.1016/j.compedu.2010.10.029 Google Scholar
  24. 24.
    Hwang, G.J., Wu, P.H., Ke, H.R.: An interactive concept map approach to supporting mobile learning activities for natural science courses. Comput. Educ. 57(4), 2272–2280 (2011).  https://doi.org/10.1016/j.compedu.2011.06.011 Google Scholar
  25. 25.
    Hwang, G.J., Kuo, F.R., Chen, N.S., Ho, H.J.: Effects of an integrated concept mapping and web-based problem-solving approach on students’ learning achievements, perceptions and cognitive loads. Comput. Educ. 71, 77–86 (2014).  https://doi.org/10.1016/j.compedu.2013.09.013 Google Scholar
  26. 26.
    Chiou, C.C.: The effect of concept mapping on students’ learning achievements and interests. Innov. Educ. Teach. Int. 45(4), 375–387 (2008).  https://doi.org/10.1080/14703290802377240 Google Scholar
  27. 27.
    Chiou, C.C., Lee, L.T., Liu, Y.Q.: Effect of Novak colorful concept map with digital teaching materials on student academic achievement. Procedia Soc. Behav. Sci. 64, 192–201 (2012).  https://doi.org/10.1016/j.sbspro.2012.11.023 Google Scholar
  28. 28.
    Hsu, L., Hsieh, S.I.: Concept maps as an assessment tool in a nursing course. J. Prof. Nurs. 21(3), 141–149 (2005).  https://doi.org/10.1016/j.profnurs.2005.04.006 MathSciNetGoogle Scholar
  29. 29.
    Gul, R.B., Boman, J.A.: Concept mapping: a strategy for teaching and evaluation in nursing education. Nurse Educ. Pract. 6(4), 199–206 (2006).  https://doi.org/10.1016/j.nepr.2006.01.001 Google Scholar
  30. 30.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)Google Scholar
  31. 31.
    Chiang, H.K., Huang, H.S., Wang, Y.S., Shih, W.Y., Tsai, C.F.: The study of learning effects by using multidimensional concept map with concept mapping assessment. Int. J. Inf. Manag. 20(3), 315–340 (2013)Google Scholar
  32. 32.
    Azuma, R.T.: A survey of augmented reality. Presence-Teleoper. Virtual Environ. 6(4), 355–385 (1997).  https://doi.org/10.1162/pres.1997.6.4.355 Google Scholar
  33. 33.
    Liarokapis, F.: An augmented reality interface for visualizing and interacting with virtual content. Virtual Real. 11(1), 23–43 (2007).  https://doi.org/10.1007/s10055-006-0055-1 Google Scholar
  34. 34.
    Chiang, T.H.C., Yang, S.J.H., Hwang, G.J.: Students’ online interactive patterns in augmented reality-based inquiry activities. Comput. Educ. 78, 97–108 (2014).  https://doi.org/10.1016/j.compedu.2014.05.006 Google Scholar
  35. 35.
    Wei, X., Weng, D., Liu, Y., Wang, Y.: Teaching based on augmented reality for a technical creative design course. Comput. Educ. 81, 221–234 (2015).  https://doi.org/10.1016/j.compedu.2014.10.017 Google Scholar
  36. 36.
    Kerawalla, L., Luckin, R., Seljeflot, S., Woolard, A.: “Making it real”: exploring the potential of augmented reality for teaching primary school science. Virtual Real. 10(3), 163–174 (2006).  https://doi.org/10.1007/s10055-006-0036-4 Google Scholar
  37. 37.
    Chen, C.H., Lee, I.J., Lin, L.Y.: Augmented reality-based self-facial modeling to promote the emotional expression and social skills of adolescents with autism spectrum disorders. Res. Dev. Disabil. 36, 396–403 (2015).  https://doi.org/10.1016/j.ridd.2014.10.015 Google Scholar
  38. 38.
    Chen, C.H., Lee, I.J., Lin, L.Y.: Augmented reality-based video-modeling storybook of nonverbal facial cues for children with autism spectrum disorder to improve their perceptions and judgments of facial expressions and emotions. Comput. Hum. Behav. 55, 477–485 (2016).  https://doi.org/10.1016/j.chb.2015.09.033 Google Scholar
  39. 39.
    Bacca, J., Baldiris, S., Fabregat, R., Graf, S.: Kinshuk.: augmented reality trends in education: a systematic review of research and applications. Educ. Technol. Soc. 17(4), 133–149 (2014)Google Scholar
  40. 40.
    Tsai, C.W., Shen, P.D., Fan, Y.T.: The application of augmented reality in online education: a review of studies published in selected journals from 2003 to 2012. Int. J. Inf. Commun. Technol. Educ. 10(2), 75–80 (2014).  https://doi.org/10.4018/ijicte.2014040107 Google Scholar
  41. 41.
    Zhou, F., Duh, H.B., Billinghurst, M.: Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 193–202 (2008).  https://doi.org/10.1109/ISMAR.2008.4637362
  42. 42.
    Chen, C.M., Tsai, Y.N.: Interactive augmented reality system for enhancing library instruction in elementary schools. Comput. Educ. 59(2), 638–652 (2012).  https://doi.org/10.1016/j.compedu.2012.03.001 Google Scholar
  43. 43.
    De Lucia, A., Francese, R., Passero, I., Tortora, G.: A collaborative augmented campus based on location-aware mobile technology. Int. J. Distance Educ. Technol. 10(1), 55–73 (2012).  https://doi.org/10.4018/jdet.2012010104 Google Scholar
  44. 44.
    Kaufmann, H., Schmalstieg, D.: Mathematics and geometry education with collaborative augmented reality. Comput. Graph. 27(3), 339–345 (2003).  https://doi.org/10.1016/S0097-8493(03)00028-1 Google Scholar
  45. 45.
    ds Max: Knowledge overview. https://knowledge.autodesk.com/support/3ds-max (2011). Accessed 20 Apr 2013
  46. 46.
    Vuforia: Natural features and image ratings. https://library.vuforia.com/articles/Solution/Natural-Features-and-Ratings (2014). Accessed 13 Aug 2015
  47. 47.
    Unity: Welcome to the unity scripting reference!. https://docs.unity3d.com/ScriptReference/index.html (2014). Accessed 11 Feb 2015
  48. 48.
    Keller, J.M.: Development and use of the ARCS model of instructional design. J. Instr. Dev. 10(3), 2–10 (1987).  https://doi.org/10.1007/BF02905780 Google Scholar
  49. 49.
    Chu, H.C., Hwang, G.J., Tsai, C.C., Tseng, J.C.R.: A two-tier test approach to developing location-aware mobile learning systems for natural science courses. Comput. Educ. 55(4), 1618–1627 (2010).  https://doi.org/10.1016/j.compedu.2010.07.004 Google Scholar
  50. 50.
    Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. L. Erlbaum, Hillsdale, NJ (1988)zbMATHGoogle Scholar
  51. 51.
    Lim, K.Y., Lee, H.W., Grabowski, B.: Does concept-mapping strategy work for everyone? The levels of generativity and learners’ self-regulated learning skills. Br. J. Educ. Technol. 40(4), 606–618 (2009).  https://doi.org/10.1111/j.1467-8535.2008.00872.x Google Scholar
  52. 52.
    Chiou, C.C., Huang, H.S., Hsieh, J.H.: Applying hypermedia assisted concept maps to construct accounting inventory teaching material. J. Natl. Taipei Teach. Coll. 17(2), 57–84 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Ergonomics and Interaction Design Lab, Department of Industrial DesignNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations