Skip to main content
Log in

Integrating affective learning into intelligent tutoring systems

  • Long Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript


Affectivity has influence in learning face-to-face environments and improves some aspects in students, such as motivation. For that reason, it is important to integrate affectivity elements into virtual environments. We propose a conceptual model that suggests which elements of tutor, student and dialogue should be integrated and implemented into learning systems. We design an ontology guided by methontology, and apply a mathematical evaluation (OntoQA) to determine the richness of the proposed model. The mathematical evaluation states that the proposed model has relationship richness and horizontal nature. We developed a software application implementing the conceptual model in order to prove its effectivity to generate students’ motivation. The findings suggest that the implemented affective learning ontology impacts positively the motivation in students with low academic performance, in female students and in engineering students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others





  1. Angelaki, C., Mavroidis, I.: Communication and social presence: the impact on adult learners’ emotions in distance learning. Eur. J. Open Distance E-learn. 16(1), 78–93 (2013)

    Google Scholar 

  2. Arguedas, M., Xhafa, F., Daradoumis, T.: An ontology about emotion awareness and affective feedback in elearning. In: International Conference on Intelligent Networking and Collaborative Systems, 2015 , pp. 156–163 (2015). doi:10.1109/INCoS.2015.78

  3. Armour, W.: Emotional intelligence, student engagement, teaching practice, employability, ethics curriculum. Investig. Univ. Teach. Learn. 8(2004), 4–10 (2012)

    Google Scholar 

  4. Arroyo, I., Woolf, B.P., Burelson, W., Muldner, K., Rai, D., Tai, M.: A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. Int. J. Artif. Intell. Educ. 24(4), 387–426 (2014). doi:10.1007/s40593-014-0023-y

    Article  Google Scholar 

  5. Balakrishnan, A.: On modeling the affective effect on learning. In: Multi-disciplinary Trends in Artificial Intelligence, pp. 225–235 (2011). doi:10.1007/978-3-642-25725-4_20

    Google Scholar 

  6. Barón-Estrada, M.L., Zatarain-Cabada, R., Zatarain-Cabada, R., Barrón-Estrada, A.: Design and implementation of an affective ITS. Res. Comput. Sci. 56(August), 60–68 (2012)

    Google Scholar 

  7. Bertola, F., Patti, V.: Ontology-based affective models to organize artworks in the social semantic web. Inf. Process. Manag. 52(1), 139–162 (2016). doi:10.1016/j.ipm.2015.10.003

    Article  Google Scholar 

  8. Bloom, B.: Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain, 2nd edn. Addison Wesley, Reading (1984)

    Google Scholar 

  9. Dennis, M., Masthoff, J., Mellish, C.: Towards a model of personality, affective state, feedback and learner motivation. CEUR Workshop Proceedings 872, 17–22 (2012)

    Google Scholar 

  10. Duffy, M.C., Azevedo, R.: Motivation matters: interactions between achievement goals and agent scaffolding for self-regulated learning within an intelligent tutoring system. Comput. Hum. Behav. 52, 338–348 (2015). doi:10.1016/j.chb.2015.05.041

    Article  Google Scholar 

  11. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. Assessment SS–97–06, 33–40 (1997). doi:10.1109/AXMEDIS.2007.19

    Article  Google Scholar 

  12. García, B.: Las dimensiones afectivas de la docencia. Rev. Digit. Univ. 10, 1–14 (2009)

    Google Scholar 

  13. Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Embodied affect in tutorial dialogue: Student gesture and posture. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7926 LNAI, 1–10 (2013). doi:10.1007/978-3-642-39112-5-1

  14. Huertas, C., Juárez-Ramírez, R.: Developing an intelligent tutoring system for vehicle dynamics. Proc. Soc. Behav. Sci. 106, 838–847 (2013). doi:10.1016/j.sbspro.2013.12.096

    Article  Google Scholar 

  15. Ibarra, L.M.: Aprende fácilmente con tus imágenes, sonidos y sensaciones, 6ta edn. Garnik Ediciones, México (2011).

  16. Ibrahimoglu, N., Unaldi, I., Samancioglu, M., Baglibel, M.: the Relationship Between Personality Traits and Learning Styles : a Cluster Analysis. In: Leena and Luna International, vol. 2, Oyama, Japan (2013)

  17. Jaques, N., Conati, C., Harley, J., Azevedo, R.: Predicting Affect from Gaze Data During Interaction with an Intelligent Tutoring System. In: 12th International Conference, ITS 2014, pp. 29–38. Springer, Honolulu, HI, USA (2014). doi:10.1007/978-3-319-07221-0_4

    Chapter  Google Scholar 

  18. Jiménez, S.: Architecting an intelligent tutoring system with an affective dialogue module. In: CONISOFT 2016 (2016)

  19. Jimenez, S., Juarez-Ramirez, R., Castillo, V.H., Ramírez-Noriega, A.: An Affective Learning Ontology for Educational Systems. In: An Affecti, pp. 1117–1126. Springer, Cham (2016). doi:10.1007/978-3-319-31232-3_106

    Chapter  Google Scholar 

  20. Juárez-Ramírez, R., Navarro-Almanza, R., Gomez-Tagle, Y., Licea, G., Huertas, C., Quinto, G.: Orchestrating an adaptive intelligent tutoring system: towards integrating the user profile for learning improvement. Proc. Soc. Behav. Sci. 106, 1986–1999 (2013). doi:10.1016/j.sbspro.2013.12.227

    Article  Google Scholar 

  21. Kopp, K., Britt, M., Millis, K., Graesser, A.: Improving the efficiency of dialogue in tutoring. Learn. Instr. 22(5), 320–330 (2012). doi:10.1016/j.learninstruc.2011.12.002

    Article  Google Scholar 

  22. Lara, V.R.: Affectivity in mathematical learning : experimental case in University of Veracruz , Mexico. Ph.D. thesis, Universidad Autónoma de Tamaulipas (2003)

  23. Letzring, T.D., Adamcik, L.A.: Personality traits and affective states: relationships with and without affect induction. Personal. Individ. Differ. 75, 114–120 (2015). doi:10.1016/j.paid.2014.11.011

    Article  Google Scholar 

  24. Lin, H.C.K., Wu, C.H., Hsueh, Y.P.: The influence of using affective tutoring system in accounting remedial instruction on learning performance and usability. Comput. Hum. Behav. 41, 514–522 (2014)

    Article  Google Scholar 

  25. Matani, D.: An O ( k log n ) algorithm for prefix based ranked autocomplete. English. 1–14 (2011)

  26. McCord, M., Matusovich, H.: Developing an Instrument to Measure Motivation , Learning Strategies and Conceptual Change. 120th ASEE Annual Conference and Exposition, Atlanta, GA (2013)

  27. Minghe, G.U.O., Yuan, W.: Affective factors in oral English teaching and learning. High. Educ. Soc. Sci. 5(3), 57–61 (2013). doi:10.3968/j.hess.1927024020130503.2956

    Article  Google Scholar 

  28. Naghizadeh, M., Moradi, H.: A model for motivation assessment in intelligent tutoring systems. In: 7th Conference on Information and Knowledge Technology (IKT), 2015, pp. 1–6 (2015). doi:10.1109/IKT.2015.7288774

  29. Nandi, A., Jagadish, H.V.: Effective Phrase Prediction. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 219–230 (2007).

  30. Novak, E.: Toward a mathematical model of motivation, volition, and performance. Comput. Educ. 74, 73–80 (2014). doi:10.1016/j.compedu.2014.01.009

    Article  Google Scholar 

  31. Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective learning—a manifesto. BT Technol. J. 22(4), 253–268 (2004). doi:10.1023/B:BTTJ.0000047603.37042.33

    Article  Google Scholar 

  32. Rica, U.D.C., Pedro, S., Oca, M.D., Rica, C.: The emotional intelligence, its importance in the learning process. Educación 36(1), 1–24 (2012)

    Google Scholar 

  33. Richards, D., Bransky, K.: ForgetMeNot: What and how users expect intelligent virtual agents to recall and forget personal conversational content. Int. J. Hum. Comput. Stud. 72(5), 460–476 (2014). doi:10.1016/j.ijhcs.2014.01.005

    Article  Google Scholar 

  34. Rimland, E.: Assessing affective learning using a student response system. Libr. Acad. 13(4), 385–401 (2013). doi:10.1353/pla.2013.0037

    Article  Google Scholar 

  35. Shephard, K.: Higher education for sustainability: seeking affective learning outcomes (2008). doi:10.1108/14676370810842201

    Article  Google Scholar 

  36. Tartir, S., Arpinar, I., Moore, M., Sheth, a., Aleman-Meza, B.: OntoQA: Metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, pp. 45–53. (2005)

  37. Wolfe, C.R., Widmer, C.L., Reyna, V.F., Hu, X., Cedillos, E.M., Fisher, C.R., Brust-Renck, P.G., Williams, T.C., Damas Vannucchi, I., Weil, A.M.: The development and analysis of tutorial dialogues in AutoTutor Lite. Behav. Res. Methods 45(3), 623–636 (2013). doi:10.3758/s13428-013-0352-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Samantha Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, S., Juárez-Ramírez, R., Castillo, V.H. et al. Integrating affective learning into intelligent tutoring systems. Univ Access Inf Soc 17, 679–692 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI: