Proactive and reactive e-government services recommendation

Abstract

Governmental portals designed to provide electronic services are generally overloaded with information that may hinder the effectiveness of e-government services. This paper proposes a new framework to supply citizens with adapted content and personalized services that satisfy their requirements and fit with their profiles in order to guarantee universal access to governmental services. The proposed reactive and proactive solutions combine several recommendation techniques that use different data sources i.e., citizen profile, social media databases, citizen’s feedback databases and service databases. It is shown that recommender systems provide citizens with accessible personalized e-government services.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Abdellatif, A., Ben Amor, N., Mellouli, S.: An intelligent framework for e-government personalized services. In: Mellouli, S., Luna-Reyes, L.F., Zhang, J., (eds.) DG.O, pp. 120–126. ACM (2013)

  2. 2.

    Al-hassan, M., Lu, H., Lu, J.: A framework for delivering personalized e-government services from a citizen-centric approach. In: Proceedings of the 11th International Conference on Information Integration and Web-based Applications & Services, pp. 436–440. ACM (2009)

  3. 3.

    Al-hassan, M., Lu, H., Lu, J.: Personalized e-government services: tourism recommender system framework. Web Information Systems and Technologies. Lecture Notes in Business Information Processing, vol. 75, pp. 173–187. Springer, Berlin (2011)

  4. 4.

    Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisles, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: Wegrzyn-Wolska, K., Szczepaniak, P. (eds.) Advances in Intelligent Web Mastering, Advances in Soft Computing, vol. 43, pp. 47–55. Springer, Berlin (2007)

    Google Scholar 

  5. 5.

    Bertot, J., Jaeger, P.: The e-government paradox: better customer service doesn’t necessarily cost less. Gov. Inf. Q. 25(2), 149–154 (2008)

    Article  Google Scholar 

  6. 6.

    Bista, S., Nepal, S., Paris, C.: The human touch of government services. In: International Workshop on Personalization in eGovernment Services and Applications, vol. 997, pp. 20–27. ceur-ws (2013)

  7. 7.

    Blanco-Fernandez, Y., Pazos-Arias, J., Gil-Solla, A., Ramos-Cabrer, M., Lopez-Nores, M.: Providing entertainment by content-based filtering and semantic reasoning in intelligent recommender systems. Consum. Electron. IEEE Trans. 54(2), 727–735 (2008)

    Article  Google Scholar 

  8. 8.

    Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(03), 315–320 (2005)

    Article  Google Scholar 

  9. 9.

    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 377–408. Springer, Berlin (2007)

  10. 10.

    Chen, H., Brandt, L., Gregg, V., Traunmueller, R., Dawes, S., Hovy, E., Macintosh, A., Larson, C. (eds.): Digital Government: E-Government Research, Case Studies, and Implementation, Integrated Series in Information Systems, vol. 17. Springer (2008)

  11. 11.

    De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: A multi-agent system for the management of e-government services. In: Proceeding of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 718–724. IEEE (2005)

  12. 12.

    Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems. Artif. Intell. 136(2), 147–188 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Ebbers, W., Pieterson, W., Noordman, H.: Electronic government: rethinking channel management strategies. Gov. Inf. Q. 25(2), 181–201 (2008)

    Article  Google Scholar 

  14. 14.

    Erra, U., Iaccarino, G., Malandrino, D., Scarano, V.: Personalizable edge services for web accessibility. Univers. Access Inf. Soc. 6(3), 285–306 (2007)

    Article  Google Scholar 

  15. 15.

    European Commission: i2010 egovernment action plan: Accelerating egovernment in europe for the benefit of all. 173 final, Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions (2006)

  16. 16.

    Fang, Z.: E-government in digital era: concept, practice and development. Int. J. Comput. Internet Manag. 10(2), 1–22 (2002)

    Google Scholar 

  17. 17.

    Felfernig, A., Burke, R.: Constraint-based recommender systems: technologies and research issues. In: International conference on Electronic commerce, pp. 3:1–3:10. ACM (2008)

  18. 18.

    Forbes, P., Zhu, M.: Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems. RecSys ’11, pp. 261–264. ACM, New York (2011)

  19. 19.

    Grandi, F., Mandreoli, F., Martoglia, R., Ronchetti, E., Scalas, M., Tiberio, P.: Ontology-based personalization of e-government services. In: Intelligent User Interfaces, pp. 167–203. ACM (2009)

  20. 20.

    Greg, L., Brent, S., Jeremy, Y.: Amazon.com recommendations: item-to-item collaborative filtering. In: IEEE Distributed Systems Online, pp. 76–80 (2003)

  21. 21.

    Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, GROUP’07, pp. 127–136 (2007)

  22. 22.

    Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 53–60. ACM (2009)

  23. 23.

    Hennig-Thurau, T., Marchand, A., Marx, P.: Can automated group recommender systems help consumers make better choices? J. Mark. 76(5), 89–109 (2012)

    Article  Google Scholar 

  24. 24.

    Iaquinta, L., Torsello, M., Comerio, M., Fanelli, A., Semeraro, G.: User segmentation in e-government services. In: International Workshop on Personalization in eGovernment Services and Applications, vol. 997, pp. 28–33. ceur-ws (2013)

  25. 25.

    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  26. 26.

    Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI magazine 13(1), 32 (1992)

    Google Scholar 

  27. 27.

    Melville, P., Mooney, R., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02), pp. 187–192. Edmonton, Alberta (2002)

  28. 28.

    Mladenic, D.: Machine learning used by personal webwatcher. In: Workshop on Machine Learning and Intelligent Agents (1999)

  29. 29.

    Nguyen, N.T., Sobecki, J.: Using consensus methods to construct adaptive interfaces in multimodal web-based systems. Univ. Access Inf. Soc. 2(4), 342–358 (2003)

    Article  Google Scholar 

  30. 30.

    OECD e-Government Studies Rethinking e-Government Services User-Centred Approaches: User-Centred Approaches. OECD Publishing, OECD e-Government Studies (2009)

  31. 31.

    Rana, N.P., Dwivedi, Y.K., Williams, M.D.: A meta-analysis of existing research on citizen adoption of e-government. Inf. Syst. Front. 7, 1–17 (2013)

  32. 32.

    Reffat, R.: Developing a successful e-government. In: Proceedings of the Symposium on E-government: Opportunities and Challenge, pp. IV1-IV13 (2003)

  33. 33.

    Régin, J.C., Petit, T., Bessière, C., Puget, J.F.: New lower bounds of constraint violations for over-constrained problems. In: Walsh, T. (ed.) Principles and Practice of Constraint Programming CP 2001, Lecture Notes in Computer Science, vol. 2239, pp. 332–345. Springer, Berlin (2001)

  34. 34.

    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Berlin (2011)

    Google Scholar 

  35. 35.

    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems—a case study. In: In ACM WEBKDD Workshop, pp. 1–12 (2000)

  36. 36.

    Savidis, A., Stephanidis, C.: Inclusive development: software engineering requirements for universally accessible interactions. Interact. Comput. 18(1), 71–116 (2006)

    Article  Google Scholar 

  37. 37.

    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: The adaptive web. chap. Collaborative Filtering Recommender Systems, pp. 291–324. Springer, Berlin (2007)

  38. 38.

    Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 253–260. ACM (2002)

  39. 39.

    Schiaffino, S., Amandi, A.: Intelligent user profiling. In: Bramer, M. (ed.) Artificial Intelligence: An International Perspective, Lecture Notes in Computer Science, vol. 5640, pp. 193–216. Springer, Berlin (2009)

  40. 40.

    Semeraro, G., Andersen, V., Andersen, H.H., de Gemmis, M., Lops, P.: User profiling and virtual agents: a case study on e-commerce services. Univ. Access Inf. Soc. 7(3), 179–194 (2008)

    Article  Google Scholar 

  41. 41.

    Shie, B.E., Yu, P.S., Tseng, V.S.: Mining interesting user behavior patterns in mobile commerce environments. Appl. Intell. 38(3), 418–435 (2013)

    Article  Google Scholar 

  42. 42.

    Sinha, R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: Proceedings of the Delos-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, vol. 106 (2001)

  43. 43.

    Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)

  44. 44.

    Syed, Z., Finin, T., Joshi, A.: Wikipedia as an ontology for describing documents. In: Proceedings of the Second International Conference on Weblogs and Social Media, pp. 136–144. AAAI Press (2008)

  45. 45.

    Tintarev, N.: Explanations of recommendations. In: Konstan, J.A., Riedl, J., Smyth, B. (eds.) RecSys, pp. 203–206. ACM, New York (2007)

    Google Scholar 

  46. 46.

    UN e-government survey 2008: From e-government to connected governance. Tech. rep., United Nations Department of Economic and Social Affairs Division for Public Administration and Development Management (2008)

  47. 47.

    Verdegem, P., Verleye, G.: User-centered e-government in practice: a comprehensive model for measuring user satisfaction. Gov. Inf. Q. 26(3), 487–497 (2009)

    Article  Google Scholar 

  48. 48.

    Zavattaroa, S., Sementelli, A.: A critical examination of social media adoption in government: introducing omnipresence. Gov. Inf. Q. 31(2), 257–264 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Imen Boukhris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayachi, R., Boukhris, I., Mellouli, S. et al. Proactive and reactive e-government services recommendation. Univ Access Inf Soc 15, 681–697 (2016). https://doi.org/10.1007/s10209-015-0442-z

Download citation

Keywords

  • E-government services
  • Accessibility
  • Recommendation
  • Personalization
  • Social media