Universal Access in the Information Society

, Volume 15, Issue 4, pp 681–697 | Cite as

Proactive and reactive e-government services recommendation

  • Raouia Ayachi
  • Imen Boukhris
  • Sehl Mellouli
  • Nahla Ben Amor
  • Zied Elouedi
Long paper

Abstract

Governmental portals designed to provide electronic services are generally overloaded with information that may hinder the effectiveness of e-government services. This paper proposes a new framework to supply citizens with adapted content and personalized services that satisfy their requirements and fit with their profiles in order to guarantee universal access to governmental services. The proposed reactive and proactive solutions combine several recommendation techniques that use different data sources i.e., citizen profile, social media databases, citizen’s feedback databases and service databases. It is shown that recommender systems provide citizens with accessible personalized e-government services.

Keywords

E-government services Accessibility Recommendation Personalization Social media 

References

  1. 1.
    Abdellatif, A., Ben Amor, N., Mellouli, S.: An intelligent framework for e-government personalized services. In: Mellouli, S., Luna-Reyes, L.F., Zhang, J., (eds.) DG.O, pp. 120–126. ACM (2013)Google Scholar
  2. 2.
    Al-hassan, M., Lu, H., Lu, J.: A framework for delivering personalized e-government services from a citizen-centric approach. In: Proceedings of the 11th International Conference on Information Integration and Web-based Applications & Services, pp. 436–440. ACM (2009)Google Scholar
  3. 3.
    Al-hassan, M., Lu, H., Lu, J.: Personalized e-government services: tourism recommender system framework. Web Information Systems and Technologies. Lecture Notes in Business Information Processing, vol. 75, pp. 173–187. Springer, Berlin (2011)Google Scholar
  4. 4.
    Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisles, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: Wegrzyn-Wolska, K., Szczepaniak, P. (eds.) Advances in Intelligent Web Mastering, Advances in Soft Computing, vol. 43, pp. 47–55. Springer, Berlin (2007)CrossRefGoogle Scholar
  5. 5.
    Bertot, J., Jaeger, P.: The e-government paradox: better customer service doesn’t necessarily cost less. Gov. Inf. Q. 25(2), 149–154 (2008)CrossRefGoogle Scholar
  6. 6.
    Bista, S., Nepal, S., Paris, C.: The human touch of government services. In: International Workshop on Personalization in eGovernment Services and Applications, vol. 997, pp. 20–27. ceur-ws (2013)Google Scholar
  7. 7.
    Blanco-Fernandez, Y., Pazos-Arias, J., Gil-Solla, A., Ramos-Cabrer, M., Lopez-Nores, M.: Providing entertainment by content-based filtering and semantic reasoning in intelligent recommender systems. Consum. Electron. IEEE Trans. 54(2), 727–735 (2008)CrossRefGoogle Scholar
  8. 8.
    Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(03), 315–320 (2005)CrossRefGoogle Scholar
  9. 9.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 377–408. Springer, Berlin (2007)Google Scholar
  10. 10.
    Chen, H., Brandt, L., Gregg, V., Traunmueller, R., Dawes, S., Hovy, E., Macintosh, A., Larson, C. (eds.): Digital Government: E-Government Research, Case Studies, and Implementation, Integrated Series in Information Systems, vol. 17. Springer (2008)Google Scholar
  11. 11.
    De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: A multi-agent system for the management of e-government services. In: Proceeding of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 718–724. IEEE (2005)Google Scholar
  12. 12.
    Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems. Artif. Intell. 136(2), 147–188 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ebbers, W., Pieterson, W., Noordman, H.: Electronic government: rethinking channel management strategies. Gov. Inf. Q. 25(2), 181–201 (2008)CrossRefGoogle Scholar
  14. 14.
    Erra, U., Iaccarino, G., Malandrino, D., Scarano, V.: Personalizable edge services for web accessibility. Univers. Access Inf. Soc. 6(3), 285–306 (2007)CrossRefGoogle Scholar
  15. 15.
    European Commission: i2010 egovernment action plan: Accelerating egovernment in europe for the benefit of all. 173 final, Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions (2006)Google Scholar
  16. 16.
    Fang, Z.: E-government in digital era: concept, practice and development. Int. J. Comput. Internet Manag. 10(2), 1–22 (2002)Google Scholar
  17. 17.
    Felfernig, A., Burke, R.: Constraint-based recommender systems: technologies and research issues. In: International conference on Electronic commerce, pp. 3:1–3:10. ACM (2008)Google Scholar
  18. 18.
    Forbes, P., Zhu, M.: Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems. RecSys ’11, pp. 261–264. ACM, New York (2011)Google Scholar
  19. 19.
    Grandi, F., Mandreoli, F., Martoglia, R., Ronchetti, E., Scalas, M., Tiberio, P.: Ontology-based personalization of e-government services. In: Intelligent User Interfaces, pp. 167–203. ACM (2009)Google Scholar
  20. 20.
    Greg, L., Brent, S., Jeremy, Y.: Amazon.com recommendations: item-to-item collaborative filtering. In: IEEE Distributed Systems Online, pp. 76–80 (2003)Google Scholar
  21. 21.
    Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, GROUP’07, pp. 127–136 (2007)Google Scholar
  22. 22.
    Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 53–60. ACM (2009)Google Scholar
  23. 23.
    Hennig-Thurau, T., Marchand, A., Marx, P.: Can automated group recommender systems help consumers make better choices? J. Mark. 76(5), 89–109 (2012)CrossRefGoogle Scholar
  24. 24.
    Iaquinta, L., Torsello, M., Comerio, M., Fanelli, A., Semeraro, G.: User segmentation in e-government services. In: International Workshop on Personalization in eGovernment Services and Applications, vol. 997, pp. 28–33. ceur-ws (2013)Google Scholar
  25. 25.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2011)Google Scholar
  26. 26.
    Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI magazine 13(1), 32 (1992)Google Scholar
  27. 27.
    Melville, P., Mooney, R., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02), pp. 187–192. Edmonton, Alberta (2002)Google Scholar
  28. 28.
    Mladenic, D.: Machine learning used by personal webwatcher. In: Workshop on Machine Learning and Intelligent Agents (1999)Google Scholar
  29. 29.
    Nguyen, N.T., Sobecki, J.: Using consensus methods to construct adaptive interfaces in multimodal web-based systems. Univ. Access Inf. Soc. 2(4), 342–358 (2003)CrossRefGoogle Scholar
  30. 30.
    OECD e-Government Studies Rethinking e-Government Services User-Centred Approaches: User-Centred Approaches. OECD Publishing, OECD e-Government Studies (2009)Google Scholar
  31. 31.
    Rana, N.P., Dwivedi, Y.K., Williams, M.D.: A meta-analysis of existing research on citizen adoption of e-government. Inf. Syst. Front. 7, 1–17 (2013)Google Scholar
  32. 32.
    Reffat, R.: Developing a successful e-government. In: Proceedings of the Symposium on E-government: Opportunities and Challenge, pp. IV1-IV13 (2003)Google Scholar
  33. 33.
    Régin, J.C., Petit, T., Bessière, C., Puget, J.F.: New lower bounds of constraint violations for over-constrained problems. In: Walsh, T. (ed.) Principles and Practice of Constraint Programming CP 2001, Lecture Notes in Computer Science, vol. 2239, pp. 332–345. Springer, Berlin (2001)Google Scholar
  34. 34.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Berlin (2011)MATHGoogle Scholar
  35. 35.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems—a case study. In: In ACM WEBKDD Workshop, pp. 1–12 (2000)Google Scholar
  36. 36.
    Savidis, A., Stephanidis, C.: Inclusive development: software engineering requirements for universally accessible interactions. Interact. Comput. 18(1), 71–116 (2006)CrossRefGoogle Scholar
  37. 37.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: The adaptive web. chap. Collaborative Filtering Recommender Systems, pp. 291–324. Springer, Berlin (2007)Google Scholar
  38. 38.
    Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 253–260. ACM (2002)Google Scholar
  39. 39.
    Schiaffino, S., Amandi, A.: Intelligent user profiling. In: Bramer, M. (ed.) Artificial Intelligence: An International Perspective, Lecture Notes in Computer Science, vol. 5640, pp. 193–216. Springer, Berlin (2009)Google Scholar
  40. 40.
    Semeraro, G., Andersen, V., Andersen, H.H., de Gemmis, M., Lops, P.: User profiling and virtual agents: a case study on e-commerce services. Univ. Access Inf. Soc. 7(3), 179–194 (2008)CrossRefGoogle Scholar
  41. 41.
    Shie, B.E., Yu, P.S., Tseng, V.S.: Mining interesting user behavior patterns in mobile commerce environments. Appl. Intell. 38(3), 418–435 (2013)CrossRefGoogle Scholar
  42. 42.
    Sinha, R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: Proceedings of the Delos-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, vol. 106 (2001)Google Scholar
  43. 43.
    Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)Google Scholar
  44. 44.
    Syed, Z., Finin, T., Joshi, A.: Wikipedia as an ontology for describing documents. In: Proceedings of the Second International Conference on Weblogs and Social Media, pp. 136–144. AAAI Press (2008)Google Scholar
  45. 45.
    Tintarev, N.: Explanations of recommendations. In: Konstan, J.A., Riedl, J., Smyth, B. (eds.) RecSys, pp. 203–206. ACM, New York (2007)CrossRefGoogle Scholar
  46. 46.
    UN e-government survey 2008: From e-government to connected governance. Tech. rep., United Nations Department of Economic and Social Affairs Division for Public Administration and Development Management (2008)Google Scholar
  47. 47.
    Verdegem, P., Verleye, G.: User-centered e-government in practice: a comprehensive model for measuring user satisfaction. Gov. Inf. Q. 26(3), 487–497 (2009)CrossRefGoogle Scholar
  48. 48.
    Zavattaroa, S., Sementelli, A.: A critical examination of social media adoption in government: introducing omnipresence. Gov. Inf. Q. 31(2), 257–264 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Raouia Ayachi
    • 1
  • Imen Boukhris
    • 1
  • Sehl Mellouli
    • 2
  • Nahla Ben Amor
    • 1
  • Zied Elouedi
    • 1
  1. 1.LARODEC, Institut Supérieur de GestionUniversité de TunisTunisTunisia
  2. 2.Faculty of Business Administration, Information Systems DepartmentUniversité LavalQuebecCanada

Personalised recommendations