Skip to main content
Log in

Use of voice input to enhance cursor control in mainstream gaming applications

  • Short Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

There are opportunities for use of voice input to enhance the effectiveness of continuous cursor control in mainstream gaming. This paper describes a program that uses voice input to manipulate the cursor gain parameter within the context of a game. For some use groups the ability to dynamically manipulate this parameter can be important in making games more accessible. The program makes use of readily-available speech technology, and can be used in conjunction with existing games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blanch, R., Guiard, Y., Beaudouin-Lafon, M.: Semantic pointing: improving target acquisition with control–display ratio adaptation. In: Proceedings of CHI 2004, pp. 519–525. ACM Press, New York (2004)

    Google Scholar 

  2. Card, S., English, W., Burr, B.J.: Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics 21, 601–613 (1978)

    Article  Google Scholar 

  3. Chaparro, A., Bohan, M., Fernandez, J.E., Choi, S.D., Kattel, B.: The impact of age on computer input device use: psychophysical and physiological measures. Int J Ind Ergon 24, 503–513 (1999)

    Article  Google Scholar 

  4. Cockburn, A., Firth, A.: Improving the acquisition of small targets. In: Proceedings of the British HCI Conference, pp. 181–196, (2003)

  5. ETSI, Generic spoken command vocabulary for ICT devices and services. (2002) ETSI ES 202 076. V1.1.2

  6. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

    Article  Google Scholar 

  7. Guiard, Y., Beaudouin-Lafon, M.: Target acquisition in Multiscale Electronic Worlds. Int. J. Hum.–Comput. Studi. 61(6), 875–905 (2004)

    Article  Google Scholar 

  8. Hazen, T.J., Polifroni, J., Seneff, S.: Recognition confidence scoring for use in speech understanding systems. Comp Speech Language 16(1), 49–67 (2002)

    Article  Google Scholar 

  9. Igarashi, T., Hughes, J.: Voice as sound: using non-verbal voice input for interactive control. In: Proceedings of 14th ACM Symp on User Interface Software and Technology, pp. 155–156. ACM Press, New York (2001)

    Google Scholar 

  10. Jellinek, H., Card, S.: Powermice and user performance, pp. 213–220. In: Proceedings of ACM CHI Human Factors in Computing systems, ACM Press, New York (1990)

    Google Scholar 

  11. Kabbash, P., Buxton, W.: The “Prince” technique: Fitts’ law and selection using area cursors. In: Proceedings of SIGCHI’95, pp. 273–279 (1995)

  12. Lane, H., Tranel, B.: The Lombard sign and the role of hearing in speech. J. Speech Hearing Res. 14, 677–709 (1971)

    Google Scholar 

  13. Logitech G15 Keyboard http://www.logitech.com/index.cfm/products/details/US/EN,CRID = 2288,CONTENTID = 10717 (2007) Accessed 5 May 2007

  14. Lombard, E.: Le signe de l’elevation de la voix. Annals Maladiers Oreille, Larynx, Nez Pharynx 37, 101–119 (1911)

    Google Scholar 

  15. MacKenzie, S.: Fitts’ law as a research and design tool in human–computer interaction. Hum.–Comput. Interact. 7, 91–139 (1992)

    Article  Google Scholar 

  16. MacKenzie, S., Riddersma, S.: Effects of output display and control–display gain on human performance in interactive systems. Behaviour and Information Technology 1(3), 328–337 (1994)

    Google Scholar 

  17. Malkin, J., Li, X., Bilmes, J.: Energy and loudness for speed control in the Vocal Joystick. In: IEEE Automatic Speech Recognition and Understanding Workshop, pp. 409–414 (2005)

  18. MouseSpeedV http://www.cabhair-cainte.com/ismiselemeas/mspd.htm (2007) Accessed 5 May 2007

  19. Pick, H., Siegel, J., Fox, P., Garber, S., Kearney, J.: Inhibiting the Lombard effect. J. Acoust. Soc. Am. 85(2), 894–900 (1989)

    Article  Google Scholar 

  20. Shneiderman, B., Plaisant, C.: Designing the User Interface, 4th edn. Addison, Wesley (2004)

    Google Scholar 

  21. Smith, M.W., Sharit, J., Czaja, S.J.: Aging, motor control, and the performance of computer mouse tasks. Hum. Factors 41, 389–439 (1999)

    Article  Google Scholar 

  22. Sporka, A.J., Kurniawan, S.H., Mahmud, M., Slavík, P.: Non-speech input and speech recognition for real-time control of computer games. In: Proceedings of Eighth International ACM SIGACCESS Conference on Computers & Accessibility, pp. 213–220. ACM Press, New York (2006)

    Google Scholar 

  23. Soltau, H., Waibel, A.: Specialized acoustic models for hyperarticulated speech. IEEE Int. Conf. Acoust. Speech. Signal. Process. 3, 1779–1782 (2000)

    Google Scholar 

  24. Trewin, S., Pain, H.: Keyboard and mouse errors due to motor disabilities. Int. J. of Hum.–Comput. Studi. 50(2), 109–144 (1999)

    Article  Google Scholar 

  25. Walker, N., Philbin, D.A., Fisk, A.D.: Age-related differences in movement control: adjusting submovement structure to optimize performance. J. Gerontol. Psychol. Sci. 52B, 40–52 (1997)

    Google Scholar 

  26. Wang, H.M., Lin, Y.C.: Error-tolerant spoken language understanding with confidence measuring. In: ICSLP-2002, pp. 1625–1628 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Kehoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehoe, A., Neff, F. & Pitt, I. Use of voice input to enhance cursor control in mainstream gaming applications. Univ Access Inf Soc 8, 89–96 (2009). https://doi.org/10.1007/s10209-008-0132-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-008-0132-1

Keywords

Navigation