Skip to main content
Log in

A Construction of \(C^r\) Conforming Finite Element Spaces in Any Dimension

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes a construction of \(C^r\) conforming finite element spaces with arbitrary r in any dimension. It is shown that if \(k \ge 2^{d}r+1\) the space \({\mathcal {P}}_k\) of polynomials of degree \(\le k\) can be taken as the shape function space of \(C^r\) finite element spaces in d dimensions. This is the first work on constructing such \(C^r\) conforming finite elements in any dimension in a unified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peter Alfeld, Larry L Schumaker, and Maritza Sirvent, On dimension and existence of local bases for multivariate spline spaces, Journal of Approximation Theory 70 (1992), 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  2. Peter Alfeld and Maritza Sirvent, The structure of multivariate superspline spaces of high degree, Mathematics of Computation 57 (1991), 299–308.

    Article  MathSciNet  MATH  Google Scholar 

  3. Paola F Antonietti, G Manzini, and Marco Verani, The conforming virtual element method for polyharmonic problems, Computers & Mathematics with Applications 79 (2020),  2021–2034.

    Article  MathSciNet  MATH  Google Scholar 

  4. John H Argyris, Isaac Fried, and Dieter W Scharpf, The TUBA family of plate elements for the matrix displacement method, The Aeronautical Journal 72 (1968), 701–709.

  5. L Beirão da Veiga, Franco Brezzi, Andrea Cangiani, Gianmarco Manzini, L Donatella Marini, and Alessandro Russo, Basic principles of virtual element methods, Mathematical Models and Methods in Applied Sciences 23 (2013),  199–214.

    Article  MathSciNet  MATH  Google Scholar 

  6. L Beirão da Veiga, Franco Brezzi, Luisa Donatella Marini, and Alessandro Russo, The hitchhiker’s guide to the virtual element method, Mathematical Models and Methods in Applied Sciences 24 (2014),  1541–1573.

    Article  MathSciNet  MATH  Google Scholar 

  7. James H Bramble and Miloš Zlámal, Triangular elements in the finite element method, Mathematics of Computation 24 (1970), 809–820.

    Article  MathSciNet  MATH  Google Scholar 

  8. Susanne C Brenner and L Ridgway Scott, The mathematical theory of finite element methods, Springer, UK. 2008.

    Book  MATH  Google Scholar 

  9. Long Chen and Xuehai Huang, Nonconforming virtual element method for \(2m\) th order partial differential equations in \(\mathbb{R} ^n\), Mathematics of Computation 89 (2020),  1711–1744.

    Article  MathSciNet  MATH  Google Scholar 

  10. Snorre H Christiansen, Jun Hu, and Kaibo Hu, Nodal finite element de rham complexes, Numerische Mathematik 139 (2018), 411–446.

  11. Charles K Chui and Ming-Jun Lai, Multivariate vertex splines and finite elements, Journal of Approximation Theory 60 (1990), 245–343.

    Article  MathSciNet  MATH  Google Scholar 

  12. Philippe G Ciarlet, The finite element method for elliptic problems, SIAM, 2002.

  13. Richard S Falk and Michael Neilan, Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM Journal on Numerical Analysis 51 (2013), 1308–1326.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jun Hu, Yunqing Huang, and Shangyou Zhang, The lowest order differentiable finite element on rectangular grids, SIAM Journal on Numerical Analysis 49 (2011),  1350–1368.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jun Hu and Yizhou Liang, Conforming discrete gradgrad-complexes in three dimensions, Mathematics of Computation 90 (2021), 1637–1662.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jun Hu and Shangyou Zhang, A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids, Science China Mathematics 58 (2015), 297–307.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jun Hu and Shangyou Zhang, The minimal conforming \(H^k\) finite element spaces on \(\mathbb{R} ^n\) rectangular grids, Mathematics of Computation 84 (2015),  563–579.

    MathSciNet  MATH  Google Scholar 

  18. Jun Hu and Shangyou Zhang, A canonical construction of hm-nonconforming triangular finite elements, Annals of Applied Mathematics 33 (2017), 266–288.

    MathSciNet  MATH  Google Scholar 

  19. Xuehai Huang, Nonconforming virtual element method for \(2m\) th order partial differential equations in \(\mathbb{R} ^n\) with \(m>n\), Calcolo 57 (2020),  1–38.

    Article  Google Scholar 

  20. Ming-Jun Lai and Larry L Schumaker, Spline functions on triangulations, Cambridge University Press, 2007.

    Book  MATH  Google Scholar 

  21. Leslie Sydney Dennis Morley, The triangular equilibrium element in the solution of plate bending problems, Aeronautical Quarterly 19 (1968), 149–169.

    Article  Google Scholar 

  22. Rolf Stenberg, Error analysis of some finite element methods for the stokes problem, Mathematics of Computation 54 (1990), 495–508.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ming Wang and Jinchao Xu, The morley element for fourth order elliptic equations in any dimensions, Numerische Mathematik 103 (2006), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ming Wang and Jinchao Xu, Minimal finite element spaces for \(2m\)-th-order partial differential equations in \(\mathbb{R} ^n\), Mathematics of Computation 82 (2013),  25–43.

    Article  MathSciNet  MATH  Google Scholar 

  25. Shuonan Wu and Jinchao Xu, \(\cal{P}_m\) interior penalty nonconforming finite element methods for \(2m\)-th order PDEs in \(\mathbb{R}^n\), arXiv preprint (2017).

  26. Shuonan Wu and Jinchao Xu, Nonconforming finite element spaces for \(2m\) th order partial differential equations on \(\mathbb{R} ^n\) simplicial grids when \(m=n+1\), Mathematics of Computation 88 (2019),  531–551.

    MathSciNet  MATH  Google Scholar 

  27. Jinchao Xu, Finite neuron method and convergence analysis, Communications in Computational Physics 28 (2020), 1707–1745.

    Article  MathSciNet  MATH  Google Scholar 

  28. Alexander Ženíšek, Interpolation polynomials on the triangle, Numerische Mathematik 15 (1970),  283–296.

    Article  MathSciNet  MATH  Google Scholar 

  29. Shangyou Zhang, A family of 3d continuously differentiable finite elements on tetrahedral grids, Applied Numerical Mathematics 59 (2009), 219–233.

    Article  MathSciNet  MATH  Google Scholar 

  30. Shangyou Zhang, A family of differentiable finite elements on simplicial grids in four space dimensions, Mathematica Numerica Sinica 38 (2016), 309.

    MathSciNet  MATH  Google Scholar 

  31. Shangyou Zhang, The nodal basis of \( C^m \)-\( P_k^{(3)}\) and \( C^m \)-\( P_k^{(4)}\) finite elements on tetrahedral and 4d simplicial grids, arXiv preprint (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Additional information

Communicated by Rob Stevenson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Lin, T. & Wu, Q. A Construction of \(C^r\) Conforming Finite Element Spaces in Any Dimension. Found Comput Math (2023). https://doi.org/10.1007/s10208-023-09627-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-023-09627-6

Keywords

Mathematics Subject Classification

Navigation